On the $\psi$-mixing condition for stationary random sequences
HTML articles powered by AMS MathViewer
- by Richard C. Bradley
- Trans. Amer. Math. Soc. 276 (1983), 55-66
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684493-5
- PDF | Request permission
Abstract:
For strictly stationary sequences of random variables two mixing conditions are studied which together form the $\psi$-mixing condition. For the dependence coefficients associated with these two mixing conditions this article gives results on the possible limiting values and possible rates of convergence to these limits.References
- H. C. P. Berbee, Weak Bernoulli processes, periodicity and renewal theory on the integers, Free University of Amsterdam, Report no. 167, April 1981.
- J. R. Blum, D. L. Hanson, and L. H. Koopmans, On the strong law of large numbers for a class of stochastic processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1963), 1–11. MR 161369, DOI 10.1007/BF00535293
- Richard C. Bradley Jr., On the $\varphi$-mixing condition for stationary random sequences, Duke Math. J. 47 (1980), no. 2, 421–433. MR 575905
- Richard C. Bradley Jr., Absolute regularity and functions of Markov chains, Stochastic Process. Appl. 14 (1983), no. 1, 67–77. MR 676274, DOI 10.1016/0304-4149(83)90047-9
- H. Kesten and G. L. O’Brien, Examples of mixing sequences, Duke Math. J. 43 (1976), no. 2, 405–415. MR 410874, DOI 10.1215/S0012-7094-76-04336-2
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 55-66
- MSC: Primary 60G10; Secondary 60F99
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684493-5
- MathSciNet review: 684493