## On the generalized Seidel class $U$

HTML articles powered by AMS MathViewer

- by Jun Shung Hwang PDF
- Trans. Amer. Math. Soc.
**276**(1983), 335-346 Request permission

## Abstract:

As usual, we say that a function $f \in U$ if $f$ is meromorphic in $| z | < 1$ and has radial limits of modulus $1$ a.e. (almost everywhere) on an arc $A$ of $\left | z \right | = 1$. This paper contains three main results: First, we extend our solution of A. J. Lohwater’s problem (1953) by showing that if $f \in U$ and $f$ has a singular point $P$ on $A$, and if $\upsilon$ and $1/\bar {\upsilon }$ are a pair of values which are not in the range of $f$ at $P$, then one of them is an asymptotic value of $f$ at some point of $A$ near $P$. Second, we extend our solution of J. L. Doob’s problem (1935) from analytic functions to meromorphic functions, namely, if $f \in U$ and $f(0) = 0$, then the range of $f$ over $\left | z \right | < 1$ covers the interior of some circle of a precise radius depending only on the length of $A$. Finally, we introduce another class of functions. Each function in this class has radial limits lying on a finite number of rays a.e. on $\left | z \right | = 1$, and preserves a sector between domain and range. We study the boundary behaviour and the representation of functions in this class.## References

- E. F. Collingwood and A. J. Lohwater,
*The theory of cluster sets*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR**0231999**, DOI 10.1017/CBO9780511566134 - Joseph L. Doob,
*The ranges of analytic functions*, Ann. of Math. (2)**36**(1935), no. 1, 117–126. MR**1503212**, DOI 10.2307/1968668 - J. S. Hwang,
*On an extremal property of Doob’s class*, Trans. Amer. Math. Soc.**252**(1979), 393–398. MR**534128**, DOI 10.1090/S0002-9947-1979-0534128-6 - J. S. Hwang,
*On the ranges of analytic functions*, Trans. Amer. Math. Soc.**260**(1980), no. 2, 623–629. MR**574804**, DOI 10.1090/S0002-9947-1980-0574804-0 - J. S. Hwang,
*On a problem of Lohwater about the asymptotic behaviour in Nevanlinna’s class*, Proc. Amer. Math. Soc.**81**(1981), no. 4, 538–540. MR**601724**, DOI 10.1090/S0002-9939-1981-0601724-1 - J. S. Hwang,
*On the Schwarz reflection principle*, Trans. Amer. Math. Soc.**272**(1982), no. 2, 711–719. MR**662062**, DOI 10.1090/S0002-9947-1982-0662062-X - A. J. Lohwater,
*On the Schwarz reflection principle*, Michigan Math. J.**2**(1953/54), 151–156 (1955). MR**68624**, DOI 10.1307/mmj/1028989920 - Rolf Nevanlinna and V. Paatero,
*Introduction to complex analysis*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. Translated from the German by T. Kövari and G. S. Goodman. MR**0239056** - Christian Pommerenke,
*Univalent functions*, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR**0507768** - Werner Rogosinski,
*Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen*, Math. Z.**35**(1932), no. 1, 93–121 (German). MR**1545292**, DOI 10.1007/BF01186552 - Wladimir Seidel,
*On the cluster values of analytic functions*, Trans. Amer. Math. Soc.**34**(1932), no. 1, 1–21. MR**1501628**, DOI 10.1090/S0002-9947-1932-1501628-X - Wladimir Seidel,
*On the distribution of values of bounded analytic functions*, Trans. Amer. Math. Soc.**36**(1934), no. 1, 201–226. MR**1501738**, DOI 10.1090/S0002-9947-1934-1501738-9

## Additional Information

- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**276**(1983), 335-346 - MSC: Primary 30C80
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684513-8
- MathSciNet review: 684513