On the generalized Seidel class $U$
HTML articles powered by AMS MathViewer
- by Jun Shung Hwang
- Trans. Amer. Math. Soc. 276 (1983), 335-346
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684513-8
- PDF | Request permission
Abstract:
As usual, we say that a function $f \in U$ if $f$ is meromorphic in $| z | < 1$ and has radial limits of modulus $1$ a.e. (almost everywhere) on an arc $A$ of $\left | z \right | = 1$. This paper contains three main results: First, we extend our solution of A. J. Lohwater’s problem (1953) by showing that if $f \in U$ and $f$ has a singular point $P$ on $A$, and if $\upsilon$ and $1/\bar {\upsilon }$ are a pair of values which are not in the range of $f$ at $P$, then one of them is an asymptotic value of $f$ at some point of $A$ near $P$. Second, we extend our solution of J. L. Doob’s problem (1935) from analytic functions to meromorphic functions, namely, if $f \in U$ and $f(0) = 0$, then the range of $f$ over $\left | z \right | < 1$ covers the interior of some circle of a precise radius depending only on the length of $A$. Finally, we introduce another class of functions. Each function in this class has radial limits lying on a finite number of rays a.e. on $\left | z \right | = 1$, and preserves a sector between domain and range. We study the boundary behaviour and the representation of functions in this class.References
- E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999, DOI 10.1017/CBO9780511566134
- Joseph L. Doob, The ranges of analytic functions, Ann. of Math. (2) 36 (1935), no. 1, 117–126. MR 1503212, DOI 10.2307/1968668
- J. S. Hwang, On an extremal property of Doob’s class, Trans. Amer. Math. Soc. 252 (1979), 393–398. MR 534128, DOI 10.1090/S0002-9947-1979-0534128-6
- J. S. Hwang, On the ranges of analytic functions, Trans. Amer. Math. Soc. 260 (1980), no. 2, 623–629. MR 574804, DOI 10.1090/S0002-9947-1980-0574804-0
- J. S. Hwang, On a problem of Lohwater about the asymptotic behaviour in Nevanlinna’s class, Proc. Amer. Math. Soc. 81 (1981), no. 4, 538–540. MR 601724, DOI 10.1090/S0002-9939-1981-0601724-1
- J. S. Hwang, On the Schwarz reflection principle, Trans. Amer. Math. Soc. 272 (1982), no. 2, 711–719. MR 662062, DOI 10.1090/S0002-9947-1982-0662062-X
- A. J. Lohwater, On the Schwarz reflection principle, Michigan Math. J. 2 (1953/54), 151–156 (1955). MR 68624, DOI 10.1307/mmj/1028989920
- Rolf Nevanlinna and V. Paatero, Introduction to complex analysis, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. Translated from the German by T. Kövari and G. S. Goodman. MR 0239056
- Christian Pommerenke, Univalent functions, Studia Mathematica/Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, 1975. With a chapter on quadratic differentials by Gerd Jensen. MR 0507768
- Werner Rogosinski, Über positive harmonische Entwicklungen und typisch-reelle Potenzreihen, Math. Z. 35 (1932), no. 1, 93–121 (German). MR 1545292, DOI 10.1007/BF01186552
- Wladimir Seidel, On the cluster values of analytic functions, Trans. Amer. Math. Soc. 34 (1932), no. 1, 1–21. MR 1501628, DOI 10.1090/S0002-9947-1932-1501628-X
- Wladimir Seidel, On the distribution of values of bounded analytic functions, Trans. Amer. Math. Soc. 36 (1934), no. 1, 201–226. MR 1501738, DOI 10.1090/S0002-9947-1934-1501738-9
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 335-346
- MSC: Primary 30C80
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684513-8
- MathSciNet review: 684513