A generalization of minimal cones
HTML articles powered by AMS MathViewer
- by Norio Ejiri
- Trans. Amer. Math. Soc. 276 (1983), 347-360
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684514-X
- PDF | Request permission
Abstract:
Let ${R_ +}$ be a positive real line, ${S^n}$ an $n$-dimensional unit sphere. We denote by ${R_+} \times {S^n}$ the polar coordinate of an $(n + 1)$-dimensional Euclidean space ${R^{n + 1}}$. It is well known that if $M$ is a minimal submanifold in ${S^n}$, then ${R_ +} \times M$ is minimal in ${R^{n + 1}}$. ${R_+} \times M$ is called a minimal cone. We generalize this fact and give many minimal submanifolds in real and complex space forms.References
- R. L. Bishop and B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. MR 251664, DOI 10.1090/S0002-9947-1969-0251664-4
- David E. Blair, On a generalization of the catenoid, Canadian J. Math. 27 (1975), 231–236. MR 380637, DOI 10.4153/CJM-1975-028-8
- Bang-yen Chen and Koichi Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974), 257–266. MR 346708, DOI 10.1090/S0002-9947-1974-0346708-7
- Norio Ejiri, Totally real minimal submanifolds in a complex projective space, Proc. Amer. Math. Soc. 86 (1982), no. 3, 496–497. MR 671223, DOI 10.1090/S0002-9939-1982-0671223-0
- Joseph Erbacher, Isometric immersions of constant mean curvature and triviality of the normal connection, Nagoya Math. J. 45 (1972), 139–165. MR 380679
- Chorng-shi Houh, Some totally real minimal surfaces in $CP^{2}$, Proc. Amer. Math. Soc. 40 (1973), 240–244. MR 317189, DOI 10.1090/S0002-9939-1973-0317189-9
- Wu-yi Hsiang and H. Blaine Lawson Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1–38. MR 298593
- H. Blaine Lawson Jr., Complete minimal surfaces in $S^{3}$, Ann. of Math. (2) 92 (1970), 335–374. MR 270280, DOI 10.2307/1970625
- Hiroo Naitoh, Totally real parallel submanifolds in $P^{n}(c)$, Tokyo J. Math. 4 (1981), no. 2, 279–306. MR 646040, DOI 10.3836/tjm/1270215155
- Katsumi Nomizu and Brian Smyth, A formula of Simons’ type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969), 367–377. MR 266109
- Koichi Ogiue, On fiberings of almost contact manifolds, K\B{o}dai Math. Sem. Rep. 17 (1965), 53–62. MR 178428
- Tominosuke Ôtsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145–173. MR 264565, DOI 10.2307/2373502
- James Simons, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88 (1968), 62–105. MR 233295, DOI 10.2307/1970556
- Shûkichi Tanno, Sasakian manifolds with constant $\phi$-holomorphic sectional curvature, Tohoku Math. J. (2) 21 (1969), 501–507. MR 251667, DOI 10.2748/tmj/1178242960
- Kentaro Yano and Shigeru Ishihara, Submanifolds with parallel mean curvature vector, J. Differential Geometry 6 (1971/72), 95–118. MR 298598
- Kentaro Yano and Masahiro Kon, Anti-invariant submanifolds, Lecture Notes in Pure and Applied Mathematics, No. 21, Marcel Dekker, Inc., New York-Basel, 1976. MR 0425849 S. T. Yau, Submanifolds with constant mean curvature. I, Amer. J. Math. 97 (1975), 76-100.
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 347-360
- MSC: Primary 53C42
- DOI: https://doi.org/10.1090/S0002-9947-1983-0684514-X
- MathSciNet review: 684514