Convergence of functions: equi-semicontinuity
Authors:
Szymon Dolecki, Gabriella Salinetti and Roger J.-B. Wets
Journal:
Trans. Amer. Math. Soc. 276 (1983), 409-430
MSC:
Primary 58E30; Secondary 49D99, 54A20
DOI:
https://doi.org/10.1090/S0002-9947-1983-0684518-7
MathSciNet review:
684518
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the relationship between various types of convergence for extended real-valued functionals engendered by the associated convergence of their epigraphs; pointwise convergence being treated as a special case. A condition of equi-semicontinuity is introduced and shown to be necessary and sufficient to allow the passage from one type of convergence to another. A number of compactness criteria are obtained for families of semicontinuous functions; in the process we give a new derivation of the Arzelá-Ascoli Theorem.
- Hédy Attouch, Familles d’opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl. (4) 120 (1979), 35–111 (French, with English summary). MR 551062, DOI https://doi.org/10.1007/BF02411939 ---, Sur la $\Gamma$-convergence, Seminaire Brézis-Lions, Collège de France.
- M. L. Bernard-Mazure, Équi-S.C.I., $\Gamma $-convergence et convergence simple, Travaux Sém. Anal. Convexe 11 (1981), no. 1, exp. no. 7, 16 (French). MR 636493
- Giuseppe Buttazzo, Su una definizione generale dei $\Gamma $-limiti, Boll. Un. Mat. Ital. B (5) 14 (1977), no. 3, 722–744 (Italian, with English summary). MR 0500789
- G. Choquet, Convergences, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23 (1948), 57–112. MR 0025716 S. Dolecki, Role of lower semicontinuity in optimality theory, Proc. Game Theory and Mathematical Economics (O. Moeschlin and D. Pallaschke, eds.), North-Holland, Amsterdam, pp. 265-274.
- Ennio De Giorgi and Tullio Franzoni, Su un tipo di convergenza variazionale, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 58 (1975), no. 6, 842–850 (Italian). MR 448194 C. Kuratowski, Topologie, PWN, Warsaw.
- Ernest Michael, Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152–182. MR 42109, DOI https://doi.org/10.1090/S0002-9947-1951-0042109-4
- Umberto Mosco, Convergence of convex sets and of solutions of variational inequalities, Advances in Math. 3 (1969), 510–585. MR 298508, DOI https://doi.org/10.1016/0001-8708%2869%2990009-7
- Gabriella Salinetti and Roger J.-B. Wets, On the relations between two types of convergence for convex functions, J. Math. Anal. Appl. 60 (1977), no. 1, 211–226. MR 479398, DOI https://doi.org/10.1016/0022-247X%2877%2990060-9
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E30, 49D99, 54A20
Retrieve articles in all journals with MSC: 58E30, 49D99, 54A20
Additional Information
Article copyright:
© Copyright 1983
American Mathematical Society