The splitting of $B\textrm {O}\langle 8\rangle \wedge b\textrm {o}$ and $M\textrm {O}\langle 8\rangle \wedge b\textrm {o}$
HTML articles powered by AMS MathViewer
- by Donald M. Davis
- Trans. Amer. Math. Soc. 276 (1983), 671-683
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688969-6
- PDF | Request permission
Abstract:
Let $BO\left \langle 8 \right \rangle$ denote the classifying space for vector bundles trivial on the $7$-skeleton, and $MO\left \langle 8 \right \rangle$ the associated Thom spectrum. It is proved that, localized at $2$, $BO\left \langle 8 \right \rangle \wedge bo$ and $MO\left \langle 8 \right \rangle \wedge bo$ split as a wedge of familiar spectra closely related to $bo$, where $bo$ is the spectrum for connective $KO$-theory.References
- J. Frank Adams, Stable homotopy theory, Second revised edition, Lecture Notes in Mathematics, No. 3, Springer-Verlag, Berlin-New York, 1966. Lectures delivered at the University of California at Berkeley, 1961; Notes by A. T. Vasquez. MR 0196742, DOI 10.1007/978-3-662-15905-7
- Ralph L. Cohen, Representations of Brown-Gitler spectra, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp.Β 399β417. MR 585672
- Ralph L. Cohen, The geometry of $\Omega ^{2}S^{3}$ and braid orientations, Invent. Math. 54 (1979), no.Β 1, 53β67. MR 549545, DOI 10.1007/BF01391176
- Donald M. Davis, On the cohomology of $M\textrm {O}\langle 8\rangle$, Symposium on Algebraic Topology in honor of JosΓ© Adem (Oaxtepec, 1981), Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R.I., 1982, pp.Β 91β104. MR 676320
- D. M. Davis, S. Gitler, W. Iberkleid, and M. E. Mahowald, Orientability of bundles with respect to certain spectra, Bol. Soc. Mat. Mexicana (2) 24 (1979), no.Β 2, 49β55. MR 637490
- Donald M. Davis, Sam Gitler, and Mark Mahowald, The stable geometric dimension of vector bundles over real projective spaces, Trans. Amer. Math. Soc. 268 (1981), no.Β 1, 39β61. MR 628445, DOI 10.1090/S0002-9947-1981-0628445-8
- Donald M. Davis and Mark Mahowald, Obstruction theory and $K$-theory, Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977) Lecture Notes in Math., vol. 658, Springer, Berlin, 1978, pp.Β 134β164. MR 513571
- V. Giambalvo, On $\langle 8\rangle$-cobordism, Illinois J. Math. 15 (1971), 533β541. MR 287553
- Richard M. Kane, Operations in connective $K$-theory, Mem. Amer. Math. Soc. 34 (1981), no.Β 254, vi+102. MR 634210, DOI 10.1090/memo/0254
- Mark Mahowald, The metastable homotopy of $S^{n}$, Memoirs of the American Mathematical Society, No. 72, American Mathematical Society, Providence, R.I., 1967. MR 0236923
- Mark Mahowald, The order of the image of the $J$-homomorphisms, Bull. Amer. Math. Soc. 76 (1970), 1310β1313. MR 270369, DOI 10.1090/S0002-9904-1970-12656-8
- Mark Mahowald, $b\textrm {o}$-resolutions, Pacific J. Math. 92 (1981), no.Β 2, 365β383. MR 618072, DOI 10.2140/pjm.1981.92.365
- Mark Mahowald, The image of $J$ in the $EHP$ sequence, Ann. of Math. (2) 116 (1982), no.Β 1, 65β112. MR 662118, DOI 10.2307/2007048
- R. James Milgram, The Steenrod algebra and its dual for connective $K$-theory, Conference on homotopy theory (Evanston, Ill., 1974) Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, MΓ©xico, 1975, pp.Β 127β158. MR 761725
- C. T. C. Wall, A characterization of simple modules over the Steenrod algebra $\textrm {mod}\ 2$, Topology 1 (1962), 249β254. MR 148061, DOI 10.1016/0040-9383(62)90108-8
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 276 (1983), 671-683
- MSC: Primary 55R12; Secondary 55R45
- DOI: https://doi.org/10.1090/S0002-9947-1983-0688969-6
- MathSciNet review: 688969