Bi-interpretable groups and lattices
HTML articles powered by AMS MathViewer
- by M. Jambu-Giraudet
- Trans. Amer. Math. Soc. 278 (1983), 253-269
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697073-2
- PDF | Request permission
Abstract:
A large class of $0\text {-}2$ transitive lattice-ordered groups is finitely axiomatizable as a class of groups and as a class of lattices. In each model, the group structure and the lattice structure plus one parameter are bi-interpretable, sometimes up to duality only. A characterization of lattice-automorphisms of the structures is also given.References
- A. M. W. Glass, Ordered permutation groups, London Mathematical Society Lecture Note Series, vol. 55, Cambridge University Press, Cambridge-New York, 1981. MR 645351
- A. M. W. Glass, Yuri Gurevich, W. Charles Holland, and Saharon Shelah, Rigid homogeneous chains, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 7–17. MR 591966, DOI 10.1017/S0305004100057881
- Yuri Gurevich and W. Charles Holland, Recognizing the real line, Trans. Amer. Math. Soc. 265 (1981), no. 2, 527–534. MR 610963, DOI 10.1090/S0002-9947-1981-0610963-X
- W. Charles Holland, Outer automorphisms of ordered permutation groups, Proc. Edinburgh Math. Soc. (2) 19 (1974/75), no. 4, 331–344. MR 387150, DOI 10.1017/S0013091500010439 M. Jambu-Giraudet, Théorie des modèles de groupes d’automorphismes d’ensembles totalement ordonnés, Thèse de troisième cycle, Univ. Paris VII, 1979.
- Michèle Jambu-Giraudet, Théorie des modèles de groupes d’automorphismes d’ensembles totalement ordonnés $2$-homogènes, C. R. Acad. Sci. Paris Sér. A-B 290 (1980), no. 22, A1037–A1039 (French, with English summary). MR 582491 —, Lattice theory of some lattice-ordered groups, Abstracts Amer. Math. Soc. 1 (1980), 477. Abstract 80T-A154.
- Stephen H. McCleary, Groups of homeomorphisms with manageable automorphism groups, Comm. Algebra 6 (1978), no. 5, 497–528. MR 484757, DOI 10.1080/00927877808822256 B. Rabinovich, On linearly ordered sets with $2$-transitive groups of automorphisms, Vescī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk 6 (1975), 10-17. (Russian)
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 278 (1983), 253-269
- MSC: Primary 06F15; Secondary 03C52
- DOI: https://doi.org/10.1090/S0002-9947-1983-0697073-2
- MathSciNet review: 697073