Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Existence of infinitely many solutions for a forward backward heat equation

Author: Klaus Höllig
Journal: Trans. Amer. Math. Soc. 278 (1983), 299-316
MSC: Primary 35K60
MathSciNet review: 697076
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $\phi$ be a piecewise linear function which satisfies the condition $s\phi (s) \geqslant c{s^2},c > 0,s \in {\mathbf {R}}$, and which is monotone decreasing on an interval $(a,b) \subset {{\mathbf {R}}_ + }$. It is shown that for $f \in {C^2}[0,1]$, with $\max f^\prime > a$, there exists a $T > 0$ such that the initial boundary value problem \[ {u_t} = \phi {({u_x})_x},\qquad {u_x}(0,t) = {u_x}(1,t) = 0,\qquad u( \cdot ,0) = f,\] has infinitely many solutions $u$ satisfying $\parallel \;u\;{\parallel _{\alpha }},\parallel \;{u_x}{\parallel _{\infty }},\parallel \;{u_t}{\parallel _{2}} \leqslant c(f,\phi )$ on $[0,1] \times [0,T]$.

References [Enhancements On Off] (What's this?)

    J. Bona, J. Nohel and L. Wahlbin, Private communication.
  • William Alan Day, The thermodynamics of simple materials with fading memory, Springer-Verlag, New York-Heidelberg, 1972. Springer Tracts in Natural Philosophy, Vol. 22. MR 0366234
  • K. Höllig and J. A. Nohel, A diffusion equation with a nonmonotone constitutive function, NATO/London Math. Soc. Conference on Systems of Partial Differential Equations, Oxford, 1982 (to appear).
  • O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva, Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa, Izdat. “Nauka”, Moscow, 1967 (Russian). MR 0241821
  • G. Strang and M. Abdel-Naby, Lecture Notes in Engineering, Springer-Verlag, Berlin and New York (to appear).

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K60

Retrieve articles in all journals with MSC: 35K60

Additional Information

Keywords: Parabolic equation, nonlinear, diffusion, nonmonotone constitutive function, existence, nonuniqueness
Article copyright: © Copyright 1983 American Mathematical Society