Improved Sobolev inequalities
Author:
Robert S. Strichartz
Journal:
Trans. Amer. Math. Soc. 279 (1983), 397-409
MSC:
Primary 46E35; Secondary 42B10, 43A77, 43A85
DOI:
https://doi.org/10.1090/S0002-9947-1983-0704623-6
MathSciNet review:
704623
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: For a function $f$ defined on ${{\mathbf {R}}^n}$, Sobolev’s inequality $\parallel f{\parallel _q} \leqslant c(\parallel f\;{\parallel _{p}} + \parallel \nabla f{\parallel _{p}})$, where $1 < p < q < \infty$ and $1/p - 1/q = 1/n$, can be improved if the Fourier transform $\hat f$ is assumed to have support in a set $A$ which satisfies an estimate $|\{ \xi \in A:||\xi || \leqslant s\} | \leqslant c{s^d}$ for some $d < n$ the improvement being that we can take $1/p - 1/q = 1/d$, provided we also assume $p \leqslant 2 \leqslant q$. Analogous results are proved for other Sobolev inequalities, for embeddings into Lipschitz-Zygmund spaces, and for functions on symmetric spaces whose Fourier expansions are suitably limited. Improved Sobolev inequalities are established locally for solutions of the wave equation. An application to the Radon transform on spheres is given.
- Philip Brenner, On $L_{p}-L_{p^{\prime } }$ estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254. MR 387819, DOI https://doi.org/10.1007/BF01215290 R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
- Michael Cowling, The Kunze-Stein phenomenon, Ann. of Math. (2) 107 (1978), no. 2, 209–234. MR 507240, DOI https://doi.org/10.2307/1971142
- Sigurdur Helgason, Functions on symmetric spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 101–146. MR 0346429
- David L. Ragozin, Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc. 150 (1970), 41–53. MR 410210, DOI https://doi.org/10.1090/S0002-9947-1970-0410210-0
- David L. Ragozin, Approximation theory, absolute convergence, and smoothness of random Fourier series on compact Lie groups, Math. Ann. 219 (1976), no. 1, 1–11. MR 410211, DOI https://doi.org/10.1007/BF01360854
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
- E. M. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder spaces and $L^{p}$-spaces, Ann. of Math. (2) 85 (1967), 337–349. MR 215121, DOI https://doi.org/10.2307/1970445
- Robert S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471. MR 256219, DOI https://doi.org/10.1090/S0002-9947-1970-0256219-1
- Robert S. Strichartz, A priori estimates for the wave equation and some applications, J. Functional Analysis 5 (1970), 218–235. MR 0257581, DOI https://doi.org/10.1016/0022-1236%2870%2990027-3
- Robert S. Strichartz, Invariant pseudo-differential operators on a Lie group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 587–611. MR 420739 ---, A note on Trudinger’s extension of Sobolev’s inequalities, Indiana Univ. Math. J. 21 (1972), 841-842.
- Robert S. Strichartz, $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981), no. 4, 699–727. MR 782573, DOI https://doi.org/10.1215/S0012-7094-81-04839-0
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 188. MR 0498999 O. V. Besov and S. Nikolskii, Integral representations of functions and imbedding theorems. I, II. Halsted, 1978.
- S. M. Nikol′skiĭ, Approximation of functions of several variables and imbedding theorems, Springer-Verlag, New York-Heidelberg., 1975. Translated from the Russian by John M. Danskin, Jr.; Die Grundlehren der Mathematischen Wissenschaften, Band 205. MR 0374877
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46E35, 42B10, 43A77, 43A85
Retrieve articles in all journals with MSC: 46E35, 42B10, 43A77, 43A85
Additional Information
Keywords:
Sobolev inequality,
symmetric space,
Radon transform,
wave equation
Article copyright:
© Copyright 1983
American Mathematical Society