Improved Sobolev inequalities
HTML articles powered by AMS MathViewer
- by Robert S. Strichartz
- Trans. Amer. Math. Soc. 279 (1983), 397-409
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704623-6
- PDF | Request permission
Abstract:
For a function $f$ defined on ${{\mathbf {R}}^n}$, Sobolev’s inequality $\parallel f{\parallel _q} \leqslant c(\parallel f\;{\parallel _{p}} + \parallel \nabla f{\parallel _{p}})$, where $1 < p < q < \infty$ and $1/p - 1/q = 1/n$, can be improved if the Fourier transform $\hat f$ is assumed to have support in a set $A$ which satisfies an estimate $|\{ \xi \in A:||\xi || \leqslant s\} | \leqslant c{s^d}$ for some $d < n$ the improvement being that we can take $1/p - 1/q = 1/d$, provided we also assume $p \leqslant 2 \leqslant q$. Analogous results are proved for other Sobolev inequalities, for embeddings into Lipschitz-Zygmund spaces, and for functions on symmetric spaces whose Fourier expansions are suitably limited. Improved Sobolev inequalities are established locally for solutions of the wave equation. An application to the Radon transform on spheres is given.References
- Philip Brenner, On $L_{p}-L_{p^{\prime } }$ estimates for the wave-equation, Math. Z. 145 (1975), no. 3, 251–254. MR 387819, DOI 10.1007/BF01215290 R. Coifman and Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
- Michael Cowling, The Kunze-Stein phenomenon, Ann. of Math. (2) 107 (1978), no. 2, 209–234. MR 507240, DOI 10.2307/1971142
- Sigurdur Helgason, Functions on symmetric spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 101–146. MR 0346429
- David L. Ragozin, Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc. 150 (1970), 41–53. MR 410210, DOI 10.1090/S0002-9947-1970-0410210-0
- David L. Ragozin, Approximation theory, absolute convergence, and smoothness of random Fourier series on compact Lie groups, Math. Ann. 219 (1976), no. 1, 1–11. MR 410211, DOI 10.1007/BF01360854
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- E. M. Stein and A. Zygmund, Boundedness of translation invariant operators on Hölder spaces and $L^{p}$-spaces, Ann. of Math. (2) 85 (1967), 337–349. MR 215121, DOI 10.2307/1970445
- Robert S. Strichartz, Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (1970), 461–471. MR 256219, DOI 10.1090/S0002-9947-1970-0256219-1
- Robert S. Strichartz, A priori estimates for the wave equation and some applications, J. Functional Analysis 5 (1970), 218–235. MR 0257581, DOI 10.1016/0022-1236(70)90027-3
- Robert S. Strichartz, Invariant pseudo-differential operators on a Lie group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 26 (1972), 587–611. MR 420739 —, A note on Trudinger’s extension of Sobolev’s inequalities, Indiana Univ. Math. J. 21 (1972), 841-842.
- Robert S. Strichartz, $L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces, Duke Math. J. 48 (1981), no. 4, 699–727. MR 782573, DOI 10.1215/S0012-7094-81-04839-0
- Garth Warner, Harmonic analysis on semi-simple Lie groups. I, Die Grundlehren der mathematischen Wissenschaften, Band 188, Springer-Verlag, New York-Heidelberg, 1972. MR 0498999 O. V. Besov and S. Nikolskii, Integral representations of functions and imbedding theorems. I, II. Halsted, 1978.
- S. M. Nikol′skiĭ, Approximation of functions of several variables and imbedding theorems, Die Grundlehren der mathematischen Wissenschaften, Band 205, Springer-Verlag, New York-Heidelberg, 1975. Translated from the Russian by John M. Danskin, Jr. MR 0374877
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 279 (1983), 397-409
- MSC: Primary 46E35; Secondary 42B10, 43A77, 43A85
- DOI: https://doi.org/10.1090/S0002-9947-1983-0704623-6
- MathSciNet review: 704623