The initial trace of a solution of the porous medium equation
HTML articles powered by AMS MathViewer
- by D. G. Aronson and L. A. Caffarelli
- Trans. Amer. Math. Soc. 280 (1983), 351-366
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712265-1
- PDF | Request permission
Abstract:
Let $u = u(x,t)$ be a continuous weak solution of the porous medium equation in ${{\mathbf {R}}^d} \times (0,T)$ for some $T > 0$. We show that corresponding to $u$ there is a unique nonnegative Borel measure $\rho$ on ${{\mathbf {R}}^d}$ which is the initial trace of $u$. Moreover, we show that the initial trace $\rho$ must belong to a certain growth class. Roughly speaking, this growth restriction shows that there are no solutions of the porous medium equation whose pressure grows, on average, more rapidly then $|x{|^2}$ as $|x| \to \infty$.References
- D. G. Aronson, Widder’s inversion theorem and the initial distribution problems, SIAM J. Math. Anal. 12 (1981), no. 4, 639–651. MR 617722, DOI 10.1137/0512056
- Donald G. Aronson and Philippe Bénilan, Régularité des solutions de l’équation des milieux poreux dans $\textbf {R}^{N}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 2, A103–A105 (French, with English summary). MR 524760
- Donald Aronson, Michael G. Crandall, and L. A. Peletier, Stabilization of solutions of a degenerate nonlinear diffusion problem, Nonlinear Anal. 6 (1982), no. 10, 1001–1022. MR 678053, DOI 10.1016/0362-546X(82)90072-4
- Philippe Bénilan, Michael G. Crandall, and Michel Pierre, Solutions of the porous medium equation in $\textbf {R}^{N}$ under optimal conditions on initial values, Indiana Univ. Math. J. 33 (1984), no. 1, 51–87. MR 726106, DOI 10.1512/iumj.1984.33.33003
- G. I. Barenblatt, On some unsteady motions of a liquid and gas in a porous medium, Akad. Nauk SSSR. Prikl. Mat. Meh. 16 (1952), 67–78 (Russian). MR 0046217
- Luis A. Caffarelli and Avner Friedman, Regularity of the free boundary of a gas flow in an $n$-dimensional porous medium, Indiana Univ. Math. J. 29 (1980), no. 3, 361–391. MR 570687, DOI 10.1512/iumj.1980.29.29027
- A. S. Kalašnikov, The Cauchy problem in the class of increasing functions for equations of non-stationary filtration type, Vestnik Moskov. Univ. Ser. I Mat. Meh. 1963 (1963), no. 6, 17–27 (Russian, with English summary). MR 0164145
- M. Ughi, Initial values of nonnegative solutions of filtration equation, J. Differential Equations 47 (1983), no. 1, 107–132. MR 684452, DOI 10.1016/0022-0396(83)90030-X
- Björn E. J. Dahlberg and Carlos E. Kenig, Nonnegative solutions of the porous medium equation, Comm. Partial Differential Equations 9 (1984), no. 5, 409–437. MR 741215, DOI 10.1080/03605308408820336
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 351-366
- MSC: Primary 35K55; Secondary 76S05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0712265-1
- MathSciNet review: 712265