Inverses and parametrices for right-invariant pseudodifferential operators on two-step nilpotent Lie groups
HTML articles powered by AMS MathViewer
- by Kenneth G. Miller
- Trans. Amer. Math. Soc. 280 (1983), 721-736
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716847-2
- PDF | Request permission
Abstract:
Let $P$ be a right-invariant pseudodifferential operator with principal part ${P_0}$ on a simply connected two-step nilpotent Lie group $G$ of type $H$. It will be shown that if $\pi (P_0)$ is injective in ${\mathcal {S}_\pi }$ for every nontrivial irreducible unitary representation $\pi$ of $G$, then $P$ has a pseudodifferential left parametrix. For such groups this generalizes the Rockland-Helffer-Nourrigat criterion for the hypoellipticity of a homogeneous right-invariant partial differential operator on $G$. If, in addition, $\pi (P)$ is injective in ${\mathcal {S}_\pi }$ for every irreducible unitary representation of $G$, it will be shown that $P$ has a pseudodifferential left inverse. The constructions of the inverse and parametrix make use of the Kirillov theory, their symbols being obtained on the orbits individually and then pieced together.References
- Richard Beals, A general calculus of pseudodifferential operators, Duke Math. J. 42 (1975), 1–42. MR 367730
- Richard Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), no. 1, 45–57. MR 435933
- R. Beals, Opérateurs invariants hypoelliptiques sur un groupe de Lie nilpotent, Séminaire Goulaouic-Schwartz 1976–1977: Équations aux dérivées partielles et analyse fonctionnelle, Centre Math., École Polytech., Palaiseau, 1977, pp. Exp. No. 19, 8 (French). MR 0494313
- A. S. Dynin, An algebra of pseudodifferential operators on the Heisenberg groups. Symbolic calculus, Dokl. Akad. Nauk SSSR 227 (1976), no. 4, 792–795 (Russian). MR 0423432
- G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat. 13 (1975), no. 2, 161–207. MR 494315, DOI 10.1007/BF02386204
- Daryl Geller, Local solvability and homogeneous distributions on the Heisenberg group, Comm. Partial Differential Equations 5 (1980), no. 5, 475–560. MR 571049, DOI 10.1080/0360530800882146
- B. Helffer, Hypoellipticité pour des opérateurs différentiels sur des groupes de Lie nilpotents, Pseudodifferential operator with applications (Bressanone, 1977) Liguori, Naples, 1978, pp. 73–88 (French). MR 660651
- B. Helffer and F. Nourrigat, Hypoellipticité pour des groupes nilpotents de rang de nilpotence $3$, Comm. Partial Differential Equations 3 (1978), no. 8, 643–743 (French). MR 499352, DOI 10.1080/03605307808820075
- B. Helffer and J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), no. 8, 899–958 (French). MR 537467, DOI 10.1080/03605307908820115
- Lars Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. MR 222474, DOI 10.1007/BF02392081 —, The Weyl calculus of pseudo-differential operators, Comm. Pure Appl. Math. 32 (1979), 359-443.
- Pierre Lévy-Bruhl, Résolubilité locale et globale d’opérateurs invariants du second ordre sur des groupes de Lie nilpotents, Bull. Sci. Math. (2) 104 (1980), no. 4, 369–391 (French, with English summary). MR 602406
- Anders Melin, Parametrix constructions for some classes of right-invariant differential operators on the Heisenberg group, Comm. Partial Differential Equations 6 (1981), no. 12, 1363–1405. MR 640161, DOI 10.1080/03605308108820214
- Guy Métivier, Hypoellipticité analytique sur des groupes nilpotents de rang $2$, Duke Math. J. 47 (1980), no. 1, 195–221 (French). MR 563376
- Kenneth G. Miller, Hypoellipticity on the Heisenberg group, J. Functional Analysis 31 (1979), no. 3, 306–320. MR 531133, DOI 10.1016/0022-1236(79)90005-3
- Kenneth G. Miller, Parametrices for hypoelliptic operators on step two nilpotent Lie groups, Comm. Partial Differential Equations 5 (1980), no. 11, 1153–1184. MR 589618, DOI 10.1080/03605308008820166
- Kenneth G. Miller, Invariant pseudodifferential operators on two-step nilpotent Lie groups, Michigan Math. J. 29 (1982), no. 3, 315–328. MR 674285
- Charles Rockland, Hypoellipticity on the Heisenberg group-representation-theoretic criteria, Trans. Amer. Math. Soc. 240 (1978), 1–52. MR 486314, DOI 10.1090/S0002-9947-1978-0486314-0
- Linda Preiss Rothschild and David S. Tartakoff, Inversion of analytic matrices and local solvability of some invariant differential operators on nilpotent Lie groups, Comm. Partial Differential Equations 6 (1981), no. 6, 625–650. MR 617784, DOI 10.1080/03605308108820187
- K\B{o}ichi Saka, Besov spaces and Sobolev spaces on a nilpotent Lie group, Tohoku Math. J. (2) 31 (1979), no. 4, 383–437. MR 558675, DOI 10.2748/tmj/1178229728
Bibliographic Information
- © Copyright 1983 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 280 (1983), 721-736
- MSC: Primary 58G15; Secondary 22E25, 22E30, 35S05
- DOI: https://doi.org/10.1090/S0002-9947-1983-0716847-2
- MathSciNet review: 716847