Classifying torsion-free subgroups of the Picard group
HTML articles powered by AMS MathViewer
- by Andrew M. Brunner, Michael L. Frame, Youn W. Lee and Norbert J. Wielenberg
- Trans. Amer. Math. Soc. 282 (1984), 205-235
- DOI: https://doi.org/10.1090/S0002-9947-1984-0728710-2
- PDF | Request permission
Abstract:
Torsion-free subgroups of finite index in the Picard group are the fundamental groups of hyperbolic $3$-manifolds. The Picard group is a polygonal product of finite groups. Recent work by Karrass, Pietrowski and Solitar on the subgroups of a polygonal product make it feasible to calculate all the torsion-free subgroups of any finite index. This computation is carried out here for index 12 and 24, where there are, respectively, 2 and 17 nonisomorphic subgroups. The manifolds are identified by using surgery.References
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227–255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9 A. Karrass, A. Pietrowski and D. Solitar, The subgroups of a polygonal product of groups (to appear). W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure and Appl. Math., vol. 13, Interscience, New York, 1966.
- Robert Riley, Discrete parabolic representations of link groups, Mathematika 22 (1975), no. 2, 141–150. MR 425946, DOI 10.1112/S0025579300005982
- R. Riley, Seven excellent knots, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 81–151. MR 662430
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, No. 7, Publish or Perish, Inc., Berkeley, Calif., 1976. MR 0515288
- Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1–77 (1971). MR 284516, DOI 10.1016/0001-8708(71)90027-2
- W. Thurston, Hyperbolic geometry and $3$-manifolds, Low-dimensional topology (Bangor, 1979) London Math. Soc. Lecture Note Ser., vol. 48, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 9–25. MR 662424
- Friedhelm Waldhausen, On irreducible $3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56–88. MR 224099, DOI 10.2307/1970594
- Norbert J. Wielenberg, Hyperbolic $3$-manifolds which share a fundamental polyhedron, Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978) Ann. of Math. Stud., vol. 97, Princeton Univ. Press, Princeton, N.J., 1981, pp. 505–513. MR 624835
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 282 (1984), 205-235
- MSC: Primary 57N10; Secondary 11F06, 20F38, 22E40, 57M25, 57S30
- DOI: https://doi.org/10.1090/S0002-9947-1984-0728710-2
- MathSciNet review: 728710