Unicellular operators
HTML articles powered by AMS MathViewer
- by José Barría and Kenneth R. Davidson
- Trans. Amer. Math. Soc. 284 (1984), 229-246
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742423-2
- PDF | Request permission
Abstract:
An operator is unicellular if its lattice of invariant subspaces is totally ordered by inclusion. The list of nests which are known to be the set of invariant subspaces of a unicellular operator is surprisingly short. We construct unicellular operators on ${l^p},1 \leqslant p < \infty$, and on ${c_0}$ with lattices isomorphic to $\alpha + X + {\beta ^{\ast }}$ where $\alpha$ and $\beta$ are countable (finite or zero) ordinals, and $X$ is in this short list. Certain other nests are attained as well.References
- J. Barría, On chains of invariant subspaces, Doctoral dissertation, Indiana University, 1974.
- José Barría, The invariant subspaces of a Volterra operator, J. Operator Theory 6 (1981), no. 2, 341–349. MR 643695
- Kenneth R. Davidson, Similarity and compact perturbations of nest algebras, J. Reine Angew. Math. 348 (1984), 72–87. MR 733923, DOI 10.1515/crll.1984.348.72 J. Dixmier, Les opérateurs permutables á l’opérateur integral, Portugal. Math. 8 (1949), 73-84.
- Yngve Domar, Translation invariant subspaces of weighted $l^{p}$ and $L^{p}$ spaces, Math. Scand. 49 (1981), no. 1, 133–144. MR 645094, DOI 10.7146/math.scand.a-11926
- W. F. Donoghue Jr., The lattice of invariant subspaces of a completely continuous quasi-nilpotent transformation, Pacific J. Math. 7 (1957), 1031–1035. MR 92124, DOI 10.2140/pjm.1957.7.1031
- Ralph Gellar and Domingo A. Herrero, Hyperinvariant subspaces of bilateral weighted shifts, Indiana Univ. Math. J. 23 (1973/74), 771–790. MR 331083, DOI 10.1512/iumj.1974.23.23065
- K. J. Harrison and W. E. Longstaff, An invariant subspace lattice of order type $\omega +\omega +1$, Proc. Amer. Math. Soc. 79 (1980), no. 1, 45–49. MR 560581, DOI 10.1090/S0002-9939-1980-0560581-1
- David R. Larson, Nest algebras and similarity transformations, Ann. of Math. (2) 121 (1985), no. 3, 409–427. MR 794368, DOI 10.2307/1971180
- N. K. Nikol′skiĭ, Invariant subspaces of weighted shift operators, Mat. Sb. (N.S.) 74 (116) (1967), 172–190 (Russian). MR 0229081 —, The unicellularity and nonunicellularity of weighted shift operators, Soviet Math. Dokl. 8 (1967), 91-94. —, Selected problems of weighted approximation and spectral analysis, Proc. Steklov Inst. Math. 120 (1974).
- Heydar Radjavi and Peter Rosenthal, Invariant subspaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 77, Springer-Verlag, New York-Heidelberg, 1973. MR 0367682, DOI 10.1007/978-3-642-65574-6
- Peter Rosenthal, Examples of invariant subspace lattices, Duke Math. J. 37 (1970), 103–112. MR 251570
- Allen L. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math. Surveys, No. 13, Amer. Math. Soc., Providence, R.I., 1974, pp. 49–128. MR 0361899
Bibliographic Information
- © Copyright 1984 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 284 (1984), 229-246
- MSC: Primary 47A15; Secondary 47A45, 47B37
- DOI: https://doi.org/10.1090/S0002-9947-1984-0742423-2
- MathSciNet review: 742423