On infinite deficiency in $\textbf {R}^ \infty$-manifolds
HTML articles powered by AMS MathViewer
- by Vo Thanh Liem
- Trans. Amer. Math. Soc. 288 (1985), 205-226
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773057-2
- PDF | Request permission
Abstract:
Using the notion of inductive proper $q - 1 - {\text {LCC}}$ introduced in this note, we will prove the following theorems. Theorem 1. Let $M$ be an ${R^\infty }$-manifold and let $H:X \times I \to M$ be a homotopy such that ${H_0}$ and ${H_1}$ are ${R^\infty }$-deficient embeddings. Then, there is a homeomorphism $F$ of $M$ such that $F \circ {H_0} = {H_1}$. Moreover, if $H$ is limited by an open cover $\alpha$ of $M$ and is stationary on a closed subset ${X_0}$ of $X$ and ${W_0}$ is an open neighborhood of \[ H[(X - {X_0}) \times I] \quad {in\;M,} \] then we can choose $F$ to also be $\operatorname {St}^4(\alpha )$-close to the identity and to be the identity on $\dot X_{0} \cup (M - {W_0})$. Theorem 2. Every closed, locally ${R^\infty }({Q^\infty })$-deficient subset of an ${R^\infty }({Q^\infty })$-manifold $M$ is ${R^\infty }({Q^\infty })$-deficient in $M$. Consequently, every closed, locally compact subset of $M$ is ${R^\infty }({Q^\infty })$-deficient in $M$.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- J. L. Bryant, On embeddings of compacta in Euclidean space, Proc. Amer. Math. Soc. 23 (1969), 46β51. MR 244973, DOI 10.1090/S0002-9939-1969-0244973-1
- T. A. Chapman, Lectures on Hilbert cube manifolds, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR 0423357, DOI 10.1090/cbms/028
- James Dugundji, Topology, Allyn and Bacon Series in Advanced Mathematics, Allyn and Bacon, Inc., Boston, Mass.-London-Sydney, 1978. Reprinting of the 1966 original. MR 0478089
- Steve Ferry, The homeomorphism group of a compact Hilbert cube manifold is an $\textrm {ANR}$, Ann. of Math. (2) 106 (1977), no.Β 1, 101β119. MR 461536, DOI 10.2307/1971161
- Richard E. Heisey, Manifolds modelled on $R^{\infty }$ or bounded weak-* topologies, Trans. Amer. Math. Soc. 206 (1975), 295β312. MR 397768, DOI 10.1090/S0002-9947-1975-0397768-X β, Stability, classification and open embeddings of ${R^\infty }$-manifolds, preprint. β, Manifolds modelled on the direct limit of Hilbert cubes, Geometric Topology (J. Cantrell, ed.), Academic Press, New York, 1977.
- Richard E. Heisey, Contracting spaces of maps on the countable direct limit of a space, Trans. Amer. Math. Soc. 193 (1974), 389β411. MR 367908, DOI 10.1090/S0002-9947-1974-0367908-6
- Richard E. Heisey, Manifolds modelled on the direct limit of lines, Pacific J. Math. 102 (1982), no.Β 1, 47β54. MR 682043, DOI 10.2140/pjm.1982.102.47
- R. E. Heisey and H. ToruΕczyk, On the topology of direct limits of ANRs, Pacific J. Math. 93 (1981), no.Β 2, 307β312. MR 623566, DOI 10.2140/pjm.1981.93.307
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- J. F. P. Hudson, Piecewise linear topology, W. A. Benjamin, Inc., New York-Amsterdam, 1969. University of Chicago Lecture Notes prepared with the assistance of J. L. Shaneson and J. Lees. MR 0248844
- Vo Thanh Liem, An $\alpha$-approximation theorem for $\textbf {R}^\infty$-manifolds, Rocky Mountain J. Math. 17 (1987), no.Β 2, 393β419. MR 892466, DOI 10.1216/RMJ-1987-17-2-393
- Vo Thanh Liem, An unknotting theorem in $Q^{\infty }$-manifolds, Proc. Amer. Math. Soc. 82 (1981), no.Β 1, 125β132. MR 603615, DOI 10.1090/S0002-9939-1981-0603615-9
- Vo Thanh Liem, An $\alpha$-approximation theorem for $Q^{\infty }$-manifolds, Topology Appl. 12 (1981), no.Β 3, 289β304. MR 623737, DOI 10.1016/0166-8641(81)90007-9
- John W. Milnor and James D. Stasheff, Characteristic classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. MR 0440554, DOI 10.1515/9781400881826
- T. Benny Rushing, Topological embeddings, Pure and Applied Mathematics, Vol. 52, Academic Press, New York-London, 1973. MR 0348752
- Edwin H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210112
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 205-226
- MSC: Primary 57N20; Secondary 57N35, 58B05
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773057-2
- MathSciNet review: 773057