Simply transitive groups and Kähler structures on homogeneous Siegel domains
HTML articles powered by AMS MathViewer
- by Josef Dorfmeister
- Trans. Amer. Math. Soc. 288 (1985), 293-305
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773062-6
- PDF | Request permission
Abstract:
We determine the Lie algebras of all simply transitive groups of automorphisms of a homogeneous Siegel domain $D$ as modifications of standard normal $j$-algebras. We show that the Lie algebra of all automorphisms of $D$ is a "complete isometry algebra in standard position". This implies that $D$ carries a riemannian metric $\tilde g$ with nonpositive sectional curvature satisfying Lie $\operatorname {Iso}(D,\tilde g) = \operatorname {Lie}\; \operatorname {Aut} \text {D}$. We determine all Kähler metrics $f$ on $D$ for which the group $\operatorname {Aut}(D,f)$ of holomorphic isometries acts transitively. We prove that in this case $\operatorname {Aut}(D,f)$ contains a simply transitive split solvable subgroup. The results of this paper are used to prove the fundamental conjecture for homogeneous Kähler manifolds admitting a solvable transitive group of automorphisms.References
- Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature. I, Trans. Amer. Math. Soc. 215 (1976), 323–362. MR 394507, DOI 10.1090/S0002-9947-1976-0394507-4
- Robert Azencott and Edward N. Wilson, Homogeneous manifolds with negative curvature. II, Mem. Amer. Math. Soc. 8 (1976), no. 178, iii+102. MR 426002, DOI 10.1090/memo/0178
- N. Bourbaki, Éléments de mathématique. Fasc. XXVI. Groupes et algèbres de Lie. Chapitre I: Algèbres de Lie, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1285, Hermann, Paris, 1971 (French). Seconde édition. MR 0271276
- J. E. D’Atri, J. Dorfmeister, and Yan Da Zhao, The isotropy representation for homogeneous Siegel domains, Pacific J. Math. 120 (1985), no. 2, 295–326. MR 810773, DOI 10.2140/pjm.1985.120.295
- Josef Dorfmeister, Zur Konstruktion homogener Kegel, Math. Ann. 216 (1975), 79–96 (German). MR 382737, DOI 10.1007/BF02547975
- Josef Dorfmeister, Inductive construction of homogeneous cones, Trans. Amer. Math. Soc. 252 (1979), 321–349. MR 534125, DOI 10.1090/S0002-9947-1979-0534125-0
- Josef Dorfmeister, Algebraic description of homogeneous cones, Trans. Amer. Math. Soc. 255 (1979), 61–89. MR 542871, DOI 10.1090/S0002-9947-1979-0542871-8 —, Homogene Siegel-Gebiete, Habilitationsschrift, Münster, 1978.
- Josef Dorfmeister, Homogeneous Siegel domains, Nagoya Math. J. 86 (1982), 39–83. MR 661219, DOI 10.1017/S0027763000019796 —, Homogeneous Kähler manifolds admitting a transitive solvable group of automorphisms, Ann. Sci. École Norm. Sup. (to appear).
- J. Dorfmeister and M. Koecher, Reguläre Kegel, Jahresber. Deutsch. Math.-Verein. 81 (1978/79), no. 3, 109–151 (German). MR 544691
- S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3–92 (Russian). MR 0171941
- È. B. Vinberg and S. G. Gindikin, Kähler manifolds admitting a transitive solvable group of automorphisms, Mat. Sb. (N.S.) 74 (116) (1967), 357–377 (Russian). MR 0224114 S. G. Gindikin, I. I. Piatetskii-Shapiro and E. B. Vinberg, Homogeneous Kähler manifolds, C.I.M.E. Edizione Cremonese, Roma, 1967. I. I. Piatetskii-Shapiro, Bounded homogeneous domains in $n$-dimensional complex space, Amer. Math. Soc. Transl. 43 (1964), 299-320.
- I. I. Pyateskii-Shapiro, Automorphic functions and the geometry of classical domains, Mathematics and its Applications, Vol. 8, Gordon and Breach Science Publishers, New York-London-Paris, 1969. Translated from the Russian. MR 0252690
- J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexes, Canadian J. Math. 7 (1955), 562–576 (French). MR 77879, DOI 10.4153/CJM-1955-061-3
Bibliographic Information
- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 288 (1985), 293-305
- MSC: Primary 32M10; Secondary 53C55
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773062-6
- MathSciNet review: 773062