Regularization of $L^ 2$ norms of Lagrangian distributions

Author:
Steven Izen

Journal:
Trans. Amer. Math. Soc. **288** (1985), 363-380

MSC:
Primary 58G15

DOI:
https://doi.org/10.1090/S0002-9947-1985-0773065-1

MathSciNet review:
773065

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a compact smooth manifold, $\dim X = n$. Let $\Lambda$ be a fixed Lagrangian submanifold of ${T^\ast }X$. The space of Lagrangian distributions ${I^k}(X,\Lambda )$ is contained in ${L^2}(X)$ if $k < - n/4$. When $k = n/4$, ${I^{ - n/4}}(X,\Lambda )$ just misses ${L^2}(X)$. A new inner product ${\langle u,v\rangle _R}$ is defined on ${I^{ - n/4}}(X,\Lambda )/{I^{ - n/4 - 1}}(X,\Lambda )$ in terms of symbols. This inner product contains "${L^2}$ information" in the following sense: Slight regularizations of the Lagrangian distributions are taken, putting them in ${L^2}(X)$. The asymptotic behavior of the ${L^2}$ inner product is examined as the regularizations approach the identity. Three different regularization schemes are presented and, in each case, ${\langle u,v\rangle _R}$ is found to regulate the growth of the ordinary ${L^2}$ inner product.

- J. J. Duistermaat,
*Fourier integral operators*, Courant Institute of Mathematical Sciences, New York University, New York, 1973. Translated from Dutch notes of a course given at Nijmegen University, February 1970 to December 1971. MR**0451313** - J. J. Duistermaat and V. W. Guillemin,
*The spectrum of positive elliptic operators and periodic bicharacteristics*, Invent. Math.**29**(1975), no. 1, 39–79. MR**405514**, DOI https://doi.org/10.1007/BF01405172 - J. J. Duistermaat and L. Hörmander,
*Fourier integral operators. II*, Acta Math.**128**(1972), no. 3-4, 183–269. MR**388464**, DOI https://doi.org/10.1007/BF02392165 - Victor Guillemin,
*Some classical theorems in spectral theory revisited*, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) Ann. of Math. Stud., vol. 91, Princeton Univ. Press, Princeton, N.J., 1979, pp. 219–259. MR**547021**
---, - Victor Guillemin and Shlomo Sternberg,
*Geometric asymptotics*, American Mathematical Society, Providence, R.I., 1977. Mathematical Surveys, No. 14. MR**0516965** - Harry Hochstadt,
*Integral equations*, John Wiley & Sons, New York-London-Sydney, 1973. Pure and Applied Mathematics. MR**0390680** - Lars Hörmander,
*The spectral function of an elliptic operator*, Acta Math.**121**(1968), 193–218. MR**609014**, DOI https://doi.org/10.1007/BF02391913 - Lars Hörmander,
*Fourier integral operators. I*, Acta Math.**127**(1971), no. 1-2, 79–183. MR**388463**, DOI https://doi.org/10.1007/BF02392052
S. Izen, Ph.D. Thesis, M.I.T., 1983.
- Louis Nirenberg,
*Lectures on linear partial differential equations*, American Mathematical Society, Providence, R.I., 1973. Expository Lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, Tex., May 22–26, 1972; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 17. MR**0450755** - R. T. Seeley,
*Complex powers of an elliptic operator*, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR**0237943** - François Trèves,
*Introduction to pseudodifferential and Fourier integral operators. Vol. 2*, Plenum Press, New York-London, 1980. Fourier integral operators; The University Series in Mathematics. MR**597145**

*The Leray residue symbol and traces of pseudodifferential operators*, M.I.T. Notes, 1981.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58G15

Retrieve articles in all journals with MSC: 58G15

Additional Information

Article copyright:
© Copyright 1985
American Mathematical Society