## Regularization of $L^ 2$ norms of Lagrangian distributions

HTML articles powered by AMS MathViewer

- by Steven Izen PDF
- Trans. Amer. Math. Soc.
**288**(1985), 363-380 Request permission

## Abstract:

Let $X$ be a compact smooth manifold, $\dim X = n$. Let $\Lambda$ be a fixed Lagrangian submanifold of ${T^\ast }X$. The space of Lagrangian distributions ${I^k}(X,\Lambda )$ is contained in ${L^2}(X)$ if $k < - n/4$. When $k = n/4$, ${I^{ - n/4}}(X,\Lambda )$ just misses ${L^2}(X)$. A new inner product ${\langle u,v\rangle _R}$ is defined on ${I^{ - n/4}}(X,\Lambda )/{I^{ - n/4 - 1}}(X,\Lambda )$ in terms of symbols. This inner product contains "${L^2}$ information" in the following sense: Slight regularizations of the Lagrangian distributions are taken, putting them in ${L^2}(X)$. The asymptotic behavior of the ${L^2}$ inner product is examined as the regularizations approach the identity. Three different regularization schemes are presented and, in each case, ${\langle u,v\rangle _R}$ is found to regulate the growth of the ordinary ${L^2}$ inner product.## References

- J. J. Duistermaat,
*Fourier integral operators*, Courant Institute of Mathematical Sciences, New York University, New York, 1973. Translated from Dutch notes of a course given at Nijmegen University, February 1970 to December 1971. MR**0451313** - J. J. Duistermaat and V. W. Guillemin,
*The spectrum of positive elliptic operators and periodic bicharacteristics*, Invent. Math.**29**(1975), no. 1, 39–79. MR**405514**, DOI 10.1007/BF01405172 - J. J. Duistermaat and L. Hörmander,
*Fourier integral operators. II*, Acta Math.**128**(1972), no. 3-4, 183–269. MR**388464**, DOI 10.1007/BF02392165 - Victor Guillemin,
*Some classical theorems in spectral theory revisited*, Seminar on Singularities of Solutions of Linear Partial Differential Equations (Inst. Adv. Study, Princeton, N.J., 1977/78) Ann. of Math. Stud., vol. 91, Princeton Univ. Press, Princeton, N.J., 1979, pp. 219–259. MR**547021**
—, - Victor Guillemin and Shlomo Sternberg,
*Geometric asymptotics*, Mathematical Surveys, No. 14, American Mathematical Society, Providence, R.I., 1977. MR**0516965**, DOI 10.1090/surv/014 - Harry Hochstadt,
*Integral equations*, Pure and Applied Mathematics, John Wiley & Sons, New York-London-Sydney, 1973. MR**0390680** - Lars Hörmander,
*The spectral function of an elliptic operator*, Acta Math.**121**(1968), 193–218. MR**609014**, DOI 10.1007/BF02391913 - Lars Hörmander,
*Fourier integral operators. I*, Acta Math.**127**(1971), no. 1-2, 79–183. MR**388463**, DOI 10.1007/BF02392052
S. Izen, Ph.D. Thesis, M.I.T., 1983.
- Louis Nirenberg,
*Lectures on linear partial differential equations*, Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 17, American Mathematical Society, Providence, R.I., 1973. Expository Lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, Tex., May 22–26, 1972. MR**0450755**, DOI 10.1090/cbms/017 - R. T. Seeley,
*Complex powers of an elliptic operator*, Singular Integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966) Amer. Math. Soc., Providence, R.I., 1967, pp. 288–307. MR**0237943** - François Trèves,
*Introduction to pseudodifferential and Fourier integral operators. Vol. 2*, University Series in Mathematics, Plenum Press, New York-London, 1980. Fourier integral operators. MR**597145**, DOI 10.1007/978-1-4684-8780-0

*The Leray residue symbol and traces of pseudodifferential operators*, M.I.T. Notes, 1981.

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**288**(1985), 363-380 - MSC: Primary 58G15
- DOI: https://doi.org/10.1090/S0002-9947-1985-0773065-1
- MathSciNet review: 773065