## Representation of set valued operators

HTML articles powered by AMS MathViewer

- by Nikolaos S. Papageorgiou PDF
- Trans. Amer. Math. Soc.
**292**(1985), 557-572 Request permission

## Abstract:

In this paper we prove representation theorems for set valued additive operators acting on the spaces $L_X^1(X = {\text {separable Banach space)}}$, ${L^1}$ and ${L^\infty }$. Those results generalize well-known ones for single valued operators and among them the celebrated Dunford-Pettis theorem. The properties of these representing integrals are studied. We also have a differentiability result for multifunctions analogous to the one that says that an absolutely continuous function from a closed interval into a Banach space with the Radon-Nikodým property is almost everywhere differentiable and also it is the primitive of its strong derivative. Finally we have a necessary and sufficient condition for the set of integrable selectors of a multifunction to be $w$-compact in $L_X^1$. This result is a new very general result about $w$-compactness in the Lebesgue-Bochner space $L_X^1$.## References

- Richard A. Alò and André de Korvin,
*Representation of Hammerstein operators by Nemytskii measures*, J. Math. Anal. Appl.**52**(1975), no. 3, 490–513. MR**428145**, DOI 10.1016/0022-247X(75)90075-X - Zvi Artstein,
*On the calculus of closed set-valued functions*, Indiana Univ. Math. J.**24**(1974/75), 433–441. MR**360985**, DOI 10.1512/iumj.1974.24.24034 - Robert J. Aumann,
*Integrals of set-valued functions*, J. Math. Anal. Appl.**12**(1965), 1–12. MR**185073**, DOI 10.1016/0022-247X(65)90049-1 - Charles Castaing,
*Le théorème de Dunford-Pettis généralisé*, Séminaire Pierre Lelong (Analyse) (année 1969), Lecture Notes in Math., Vol. 116, Springer, Berlin, 1970, pp. 133–151 (French). MR**0372612**
—, - C. Castaing and M. Valadier,
*Convex analysis and measurable multifunctions*, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR**0467310**
A. Costé, - A. Costé and R. Pallu de la Barrière,
*Radon-Nikodým theorems for set-valued measures whose values are convex and closed*, Comment. Math. Prace Mat.**20**(1977/78), no. 2, 283–309 (loose errata). MR**519365** - Phan Văn Chu’o’ng,
*On the density of extremal selections for measurable multifunctions*, Acta Math. Vietnam.**6**(1981), no. 2, 13–28 (1982). MR**694272**
J. P. Delahaye and J. Denel, - J. Diestel and J. J. Uhl Jr.,
*Vector measures*, Mathematical Surveys, No. 15, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis. MR**0453964** - N. Dinculeanu,
*Vector measures*, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR**0206189** - Henry Hermes,
*Calculus of set valued functions and control*, J. Math. Mech.**18**(1968/1969), 47–59. MR**0231972**, DOI 10.1512/iumj.1969.18.18006 - Edwin Hewitt and Karl Stromberg,
*Real and abstract analysis*, Graduate Texts in Mathematics, No. 25, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing. MR**0367121** - Fumio Hiai,
*Radon-Nikodým theorems for set-valued measures*, J. Multivariate Anal.**8**(1978), no. 1, 96–118. MR**583862**, DOI 10.1016/0047-259X(78)90022-2 - Fumio Hiai,
*Representation of additive functionals on vector-valued normed Köthe spaces*, Kodai Math. J.**2**(1979), no. 3, 300–313. MR**553237** - Fumio Hiai and Hisaharu Umegaki,
*Integrals, conditional expectations, and martingales of multivalued functions*, J. Multivariate Anal.**7**(1977), no. 1, 149–182. MR**507504**, DOI 10.1016/0047-259X(77)90037-9 - C. J. Himmelberg,
*Measurable relations*, Fund. Math.**87**(1975), 53–72. MR**367142**, DOI 10.4064/fm-87-1-53-72 - A. Ionescu Tulcea and C. Ionescu Tulcea,
*Topics in the theory of lifting*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York, Inc., New York, 1969. MR**0276438**
I. M. Gelfand, - Victor J. Mizel and K. Sundaresan,
*Representation of vector valued nonlinear functions*, Trans. Amer. Math. Soc.**159**(1971), 111–127. MR**279647**, DOI 10.1090/S0002-9947-1971-0279647-8 - Umberto Mosco,
*On the continuity of the Young-Fenchel transform*, J. Math. Anal. Appl.**35**(1971), 518–535. MR**283586**, DOI 10.1016/0022-247X(71)90200-9
N. S. Papageorgiou, - R. Tyrrell Rockafellar,
*Integral functionals, normal integrands and measurable selections*, Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975) Lecture Notes in Math., Vol. 543, Springer, Berlin, 1976, pp. 157–207. MR**0512209**

*Un résultat de dérivation des multi-applications*, Séminaire d’Analyse Convexe, University of Montpellier (1974), Exposé no. 2.

*Set valued measures*, Topology and Measure Theory (D. D. R. Zinnowitz, ed.), 1974.

*The continuities of the point-to-set maps*:

*Definitions and equivalences*, Math. Programming Stud.

**10**(1979), 8-12. J. Diestel,

*Remarks on weak compactness in*${L^1}(,X)$, Glasgow Math. J.

**18**(1977), 87-91.

*Abstrakte Functionen und Lineare Operatoren*, Math. Sb.

**4**(1938), 235-286.

*On the theory of Banach valued multifunctions, Part*1:

*Integration and conditional expectation*, J. Multivariate Anal.

**16**(1985) (in press).

## Additional Information

- © Copyright 1985 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**292**(1985), 557-572 - MSC: Primary 47H99; Secondary 28B20, 46E30, 46G99
- DOI: https://doi.org/10.1090/S0002-9947-1985-0808737-3
- MathSciNet review: 808737