Representation of set valued operators
Author:
Nikolaos S. Papageorgiou
Journal:
Trans. Amer. Math. Soc. 292 (1985), 557-572
MSC:
Primary 47H99; Secondary 28B20, 46E30, 46G99
DOI:
https://doi.org/10.1090/S0002-9947-1985-0808737-3
MathSciNet review:
808737
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we prove representation theorems for set valued additive operators acting on the spaces $L_X^1(X = {\text {separable Banach space)}}$, ${L^1}$ and ${L^\infty }$. Those results generalize well-known ones for single valued operators and among them the celebrated Dunford-Pettis theorem. The properties of these representing integrals are studied. We also have a differentiability result for multifunctions analogous to the one that says that an absolutely continuous function from a closed interval into a Banach space with the Radon-Nikodým property is almost everywhere differentiable and also it is the primitive of its strong derivative. Finally we have a necessary and sufficient condition for the set of integrable selectors of a multifunction to be $w$-compact in $L_X^1$. This result is a new very general result about $w$-compactness in the Lebesgue-Bochner space $L_X^1$.
- Richard A. Alò and André de Korvin, Representation of Hammerstein operators by Nemytskii measures, J. Math. Anal. Appl. 52 (1975), no. 3, 490–513. MR 428145, DOI https://doi.org/10.1016/0022-247X%2875%2990075-X
- Zvi Artstein, On the calculus of closed set-valued functions, Indiana Univ. Math. J. 24 (1974/75), 433–441. MR 360985, DOI https://doi.org/10.1512/iumj.1974.24.24034
- Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, DOI https://doi.org/10.1016/0022-247X%2865%2990049-1
- Charles Castaing, Le théorème de Dunford-Pettis généralisé, Séminaire Pierre Lelong (Analyse) (année 1969), Springer, Berlin, 1970, pp. 133–151. Lecture Notes in Math., Vol. 116 (French). MR 0372612 ---, Un résultat de dérivation des multi-applications, Séminaire d’Analyse Convexe, University of Montpellier (1974), Exposé no. 2.
- C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. MR 0467310 A. Costé, Set valued measures, Topology and Measure Theory (D. D. R. Zinnowitz, ed.), 1974.
- A. Costé and R. Pallu de la Barrière, Radon-Nikodým theorems for set-valued measures whose values are convex and closed, Comment. Math. Prace Mat. 20 (1977/78), no. 2, 283–309 (loose errata). MR 519365
- Phan Văn Chu’o’ng, On the density of extremal selections for measurable multifunctions, Acta Math. Vietnam. 6 (1981), no. 2, 13–28 (1982). MR 694272 J. P. Delahaye and J. Denel, The continuities of the point-to-set maps: Definitions and equivalences, Math. Programming Stud. 10 (1979), 8-12. J. Diestel, Remarks on weak compactness in ${L^1}(,X)$, Glasgow Math. J. 18 (1977), 87-91.
- J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. MR 0453964
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Bd. 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- Henry Hermes, Calculus of set valued functions and control, J. Math. Mech. 18 (1968/1969), 47–59. MR 0231972, DOI https://doi.org/10.1512/iumj.1969.18.18006
- Edwin Hewitt and Karl Stromberg, Real and abstract analysis, Springer-Verlag, New York-Heidelberg, 1975. A modern treatment of the theory of functions of a real variable; Third printing; Graduate Texts in Mathematics, No. 25. MR 0367121
- Fumio Hiai, Radon-Nikodým theorems for set-valued measures, J. Multivariate Anal. 8 (1978), no. 1, 96–118. MR 583862, DOI https://doi.org/10.1016/0047-259X%2878%2990022-2
- Fumio Hiai, Representation of additive functionals on vector-valued normed Köthe spaces, Kodai Math. J. 2 (1979), no. 3, 300–313. MR 553237
- Fumio Hiai and Hisaharu Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), no. 1, 149–182. MR 507504, DOI https://doi.org/10.1016/0047-259X%2877%2990037-9
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI https://doi.org/10.4064/fm-87-1-53-72
- A. Ionescu Tulcea and C. Ionescu Tulcea, Topics in the theory of lifting, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 48, Springer-Verlag New York Inc., New York, 1969. MR 0276438 I. M. Gelfand, Abstrakte Functionen und Lineare Operatoren, Math. Sb. 4 (1938), 235-286.
- Victor J. Mizel and K. Sundaresan, Representation of vector valued nonlinear functions, Trans. Amer. Math. Soc. 159 (1971), 111–127. MR 279647, DOI https://doi.org/10.1090/S0002-9947-1971-0279647-8
- Umberto Mosco, On the continuity of the Young-Fenchel transform, J. Math. Anal. Appl. 35 (1971), 518–535. MR 283586, DOI https://doi.org/10.1016/0022-247X%2871%2990200-9 N. S. Papageorgiou, On the theory of Banach valued multifunctions, Part 1: Integration and conditional expectation, J. Multivariate Anal. 16 (1985) (in press).
- R. Tyrrell Rockafellar, Integral functionals, normal integrands and measurable selections, Nonlinear operators and the calculus of variations (Summer School, Univ. Libre Bruxelles, Brussels, 1975) Springer, Berlin, 1976, pp. 157–207. Lecture Notes in Math., Vol. 543. MR 0512209
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47H99, 28B20, 46E30, 46G99
Retrieve articles in all journals with MSC: 47H99, 28B20, 46E30, 46G99
Additional Information
Keywords:
Set valued operator,
lifting,
support function,
measurable multifunction integrable selector,
Radon-Nikodým property,
weak compactness,
multimeasure
Article copyright:
© Copyright 1985
American Mathematical Society