The least $r$-free number in an arithmetic progression
HTML articles powered by AMS MathViewer
- by Kevin S. McCurley
- Trans. Amer. Math. Soc. 293 (1986), 467-475
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816304-1
- PDF | Request permission
Abstract:
Let ${n_r}(a,q)$ be the least $r$-free number in the arithmetic progession $a$ modulo $q$. Several results are proved that give lower bounds for ${n_r}(a,q)$, improving on previous results due to Erdös and Warlimont. In addition, a heuristic argument is given, leading to two conjectures that would imply that the results of the paper are close to best possible.References
- E. Cohen and Richard L. Robinson, On the distribution of the $k$-free integers in residue classes, Acta Arith. 8 (1962/63), 283–293. MR 157960, DOI 10.4064/aa-8-3-283-293
- P. Erdős, Über die kleinste quadratfreie Zahl einer arithmetischen Reihe, Monatsh. Math. 64 (1960), 314–316 (German). MR 118705, DOI 10.1007/BF01498607
- D. R. Heath-Brown, The least square-free number in an arithmetic progression, J. Reine Angew. Math. 332 (1982), 204–220. MR 656864, DOI 10.1515/crll.1982.332.204
- C. Hooley, A note on square-free numbers in arithmetic progressions, Bull. London Math. Soc. 7 (1975), 133–138. MR 371799, DOI 10.1112/blms/7.2.133
- Martin Huxley, The difference between consecutive primes, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 141–145. MR 0357348
- Henryk Iwaniec, On the problem of Jacobsthal, Demonstratio Math. 11 (1978), no. 1, 225–231. MR 499895, DOI 10.1515/dema-1978-0121
- Carl Pomerance, A note on the least prime in an arithmetic progression, J. Number Theory 12 (1980), no. 2, 218–223. MR 578815, DOI 10.1016/0022-314X(80)90056-6
- Karl Prachar, Über die kleinste quadratfreie Zahl einer arithmetischen Reihe, Monatsh. Math. 62 (1958), 173–176 (German). MR 92806, DOI 10.1007/BF01301288
- K. Prachar, Über die kleinste Primzahl einer arithmetischen Reihe, J. Reine Angew. Math. 206 (1961), 3–4 (German). MR 125092, DOI 10.1515/crll.1961.206.3
- R. A. Rankin, The difference between consecutive prime numbers. V, Proc. Edinburgh Math. Soc. (2) 13 (1962/63), 331–332. MR 160767, DOI 10.1017/S0013091500025633
- Samuel S. Wagstaff Jr., Greatest of the least primes in arithmetic progressions having a given modulus, Math. Comp. 33 (1979), no. 147, 1073–1080. MR 528061, DOI 10.1090/S0025-5718-1979-0528061-7
- Richard Warlimont, On squarefree numbers in arthmetic progressions, Monatsh. Math. 73 (1969), 433–448. MR 258784, DOI 10.1007/BF01316664
- Richard Warlimont, Über die kleinsten quadratfreien Zahlen in arithmetischen Progressionen, J. Reine Angew. Math. 250 (1971), 99–106 (German). MR 291109, DOI 10.1515/crll.1971.250.99
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 293 (1986), 467-475
- MSC: Primary 11B25; Secondary 11N25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0816304-1
- MathSciNet review: 816304