Spherical polynomials and the periods of a certain modular form
Author:
David Kramer
Journal:
Trans. Amer. Math. Soc. 294 (1986), 595-605
MSC:
Primary 11F11; Secondary 11F66
DOI:
https://doi.org/10.1090/S0002-9947-1986-0825724-0
MathSciNet review:
825724
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The space of cusp forms on ${\text {S}}{{\text {L}}_2}({\mathbf {Z}})$ of weight $2k$ is spanned by certain modular forms with rational periods.
- E. Hecke, Zur Theorie der elliptischen Modulfunktionen, Math. Ann. 97 (1927), no. 1, 210â242 (German). MR 1512360, DOI https://doi.org/10.1007/BF01447866 ---, Analytische Funktionen und Algebraische Zahlen, Zweiter Teil, Abh. Math. Sem. Univ. Hamburg. 3 (1924), 13-236. Number 20 in Mathematische Werke.
- Svetlana Katok, Modular forms associated to closed geodesics and arithmetic applications, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 1, 177â179. MR 741734, DOI https://doi.org/10.1090/S0273-0979-1984-15257-1
- Winfried Kohnen, Beziehungen zwischen Modulformen halbganzen Gewichts und Modulformen ganzen Gewichts, Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 131, UniversitÀt Bonn, Mathematisches Institut, Bonn, 1981 (German). Dissertation, Rheinische Friedrich-Wilhelms-UniversitÀt, Bonn, 1980. MR 633060
- W. Kohnen and D. Zagier, Modular forms with rational periods, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 197â249. MR 803368
- W. Kohnen and D. Zagier, Values of $L$-series of modular forms at the center of the critical strip, Invent. Math. 64 (1981), no. 2, 175â198. MR 629468, DOI https://doi.org/10.1007/BF01389166 David Kramer, Applications of Gaussâs theory of binary quadratic forms to zeta functions and modular forms, Trans. Amer. Math. Soc. (to appear).
- Andrew Ogg, Modular forms and Dirichlet series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0256993
- Serge Lang, Introduction to modular forms, Springer-Verlag, Berlin-New York, 1976. Grundlehren der mathematischen Wissenschaften, No. 222. MR 0429740
- Carl Ludwig Siegel, Berechnung von Zetafunktionen an ganzzahligen Stellen, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1969 (1969), 87â102 (German). MR 252349
- Don Zagier, A Kronecker limit formula for real quadratic fields, Math. Ann. 213 (1975), 153â184. MR 366877, DOI https://doi.org/10.1007/BF01343950
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer-Verlag, Berlin-New York, 1981 (German). Eine EinfĂŒhrung in die höhere Zahlentheorie. [An introduction to higher number theory]; Hochschultext. [University Text]. MR 631688
- Don Zagier, Modular forms associated to real quadratic fields, Invent. Math. 30 (1975), no. 1, 1â46. MR 382174, DOI https://doi.org/10.1007/BF01389846
Retrieve articles in Transactions of the American Mathematical Society with MSC: 11F11, 11F66
Retrieve articles in all journals with MSC: 11F11, 11F66
Additional Information
Article copyright:
© Copyright 1986
American Mathematical Society