## The spectrum $(P\wedge \textrm {BP}\langle 2\rangle )_ {-\infty }$

HTML articles powered by AMS MathViewer

- by Donald M. Davis, David C. Johnson, John Klippenstein, Mark Mahowald and Steven Wegmann PDF
- Trans. Amer. Math. Soc.
**296**(1986), 95-110 Request permission

## Abstract:

The spectrum ${(P \wedge {\text {BP}}\langle {\text {2}}\rangle )_{ - \infty }}$ is defined to be the homotopy inverse limit of spectra ${P_{ - k}} \wedge {\text {BP}}\langle {\text {2}}\rangle$, where ${P_{ - k}}$ is closely related to stunted real projective spaces, and ${\text {BP}}\langle {\text {2}}\rangle$ is formed from the Brown-Peterson spectrum. It is proved that this spectrum is equivalent to the infinite product of odd suspensions of the $2$-adic completion of the spectrum of connective $K$-theory. An odd-primary analogue is also proved.## References

- J. F. Adams,
*Stable homotopy and generalised homology*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR**0402720** - J. F. Adams and S. B. Priddy,
*Uniqueness of $B\textrm {SO}$*, Math. Proc. Cambridge Philos. Soc.**80**(1976), no.Β 3, 475β509. MR**431152**, DOI 10.1017/S0305004100053111 - J. F. Adams and G. Walker,
*On complex Stiefel manifolds*, Proc. Cambridge Philos. Soc.**61**(1965), 81β103. MR**171285**, DOI 10.1017/S0305004100038688 - Nils Andreas Baas,
*Bordism theories with singularities*, Proceedings of the Advanced Study Institute on Algebraic Topology (Aarhus Univ., Aarhus, 1970) Various Publ. Ser., No. 13, Mat. Inst., Aarhus Univ., Aarhus, 1970, pp.Β 1β16. MR**0346823** - A. K. Bousfield,
*The localization of spectra with respect to homology*, Topology**18**(1979), no.Β 4, 257β281. MR**551009**, DOI 10.1016/0040-9383(79)90018-1 - Edgar H. Brown Jr. and Franklin P. Peterson,
*A spectrum whose $Z_{p}$ cohomology is the algebra of reduced $p^{th}$ powers*, Topology**5**(1966), 149β154. MR**192494**, DOI 10.1016/0040-9383(66)90015-2 - Donald M. Davis,
*Odd primary $b\textrm {o}$-resolutions and $K$-theory localization*, Illinois J. Math.**30**(1986), no.Β 1, 79β100. MR**822385** - Donald M. Davis and Mark Mahowald,
*The spectrum $(P\wedge b\textrm {o})_{-\infty }$*, Math. Proc. Cambridge Philos. Soc.**96**(1984), no.Β 1, 85β93. MR**743704**, DOI 10.1017/S030500410006196X - David Copeland Johnson and W. Stephen Wilson,
*Projective dimension and Brown-Peterson homology*, Topology**12**(1973), 327β353. MR**334257**, DOI 10.1016/0040-9383(73)90027-X - Tsunekazu Kambe, Hiromichi Matsunaga, and Hirosi Toda,
*A note on stunted lens space*, J. Math. Kyoto Univ.**5**(1966), 143β149. MR**190929**, DOI 10.1215/kjm/1250524531 - Richard M. Kane,
*Operations in connective $K$-theory*, Mem. Amer. Math. Soc.**34**(1981), no.Β 254, vi+102. MR**634210**, DOI 10.1090/memo/0254 - Wen Hsiung Lin,
*On conjectures of Mahowald, Segal and Sullivan*, Math. Proc. Cambridge Philos. Soc.**87**(1980), no.Β 3, 449β458. MR**556925**, DOI 10.1017/S0305004100056887 - Mark Mahowald,
*$b\textrm {o}$-resolutions*, Pacific J. Math.**92**(1981), no.Β 2, 365β383. MR**618072**, DOI 10.2140/pjm.1981.92.365 - R. James Milgram,
*The Steenrod algebra and its dual for connective $K$-theory*, Conference on homotopy theory (Evanston, Ill., 1974) Notas Mat. Simpos., vol. 1, Soc. Mat. Mexicana, MΓ©xico, 1975, pp.Β 127β158. MR**761725** - Stephen A. Mitchell and Stewart B. Priddy,
*Stable splittings derived from the Steinberg module*, Topology**22**(1983), no.Β 3, 285β298. MR**710102**, DOI 10.1016/0040-9383(83)90014-9 - Douglas C. Ravenel,
*Localization with respect to certain periodic homology theories*, Amer. J. Math.**106**(1984), no.Β 2, 351β414. MR**737778**, DOI 10.2307/2374308 - C. A. Robinson,
*A KΓΌnneth theorem for connective $K$-theory*, J. London Math. Soc. (2)**17**(1978), no.Β 1, 173β181. MR**478134**, DOI 10.1112/jlms/s2-17.1.173
S. Wegmann, - W. Stephen Wilson,
*Brown-Peterson homology: an introduction and sampler*, CBMS Regional Conference Series in Mathematics, vol. 48, Conference Board of the Mathematical Sciences, Washington, D.C., 1982. MR**655040**

*Inverse systems of spectra and generalizations of a theorem of W. H. Lin*, Thesis, Univ. of Warwick, 1983.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**296**(1986), 95-110 - MSC: Primary 55P42; Secondary 55N22, 55T15
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837800-7
- MathSciNet review: 837800