Automorphic images of commutative subspace lattices
HTML articles powered by AMS MathViewer
- by K. J. Harrison and W. E. Longstaff
- Trans. Amer. Math. Soc. 296 (1986), 217-228
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837808-1
- PDF | Request permission
Abstract:
Let $C(H)$ denote the lattice of all (closed) subspaces of a complex, separable Hilbert space $H$. Let $({\text {AC)}}$ be the following condition that a subspace lattice $\mathcal {F} \subseteq C(H)$ may or may not satisfy: (AC) \[ \begin {array}{*{20}{c}} {\mathcal {F} = \phi (\mathcal {L})\;{\text {for}}\;{\text {some}}\;{\text {lattice}}\;{\text {automorphism}}\;\phi \;{\text {of}}\;C(H)} \\ {{\text {and}}\;{\text {some}}\;{\text {commutative}}\;{\text {subspace}}\;{\text {lattice}}\;\mathcal {L} \subseteq C(H).} \\ \end {array} \] Then $\mathcal {F}$ satisfies $({\text {AC}})$ if and only if $\mathcal {A} \subseteq \mathcal {B}$ for some Boolean algebra subspace lattice $\mathcal {B} \subseteq C(H)$ with the property that, for every $K,L \in \mathcal {B}$, the vector sum $K + L$ is closed. If $\mathcal {F}$ is finite, then $\mathcal {F}$ satisfies $({\text {AC}})$ if and only if $\mathcal {F}$ is distributive and $K + L$ is closed for every $K,L \in \mathcal {F}$. In finite dimensions $\mathcal {F}$ satisfies $({\text {AC}})$ if and only if $\mathcal {F}$ is distributive. Every $\mathcal {F}$ satisfying $({\text {AC}})$ is reflexive. For such $\mathcal {F}$, given vectors $x,y \in H$, the solvability of the equation $Tx = y$ for $T \in \operatorname {Alg} \mathcal {F}$ is investigated.References
- William Arveson, Operator algebras and invariant subspaces, Ann. of Math. (2) 100 (1974), 433–532. MR 365167, DOI 10.2307/1970956
- William G. Bade, Weak and strong limits of spectral operators, Pacific J. Math. 4 (1954), 393–413. MR 63567
- William G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345–360. MR 73954, DOI 10.1090/S0002-9947-1955-0073954-0
- Reinhold Baer, Linear algebra and projective geometry, Academic Press, Inc., New York, N.Y., 1952. MR 0052795
- John B. Conway, A complete Boolean algebra of subspaces which is not reflexive, Bull. Amer. Math. Soc. 79 (1973), 720–722. MR 320778, DOI 10.1090/S0002-9904-1973-13279-3
- Kenneth R. Davidson, Commutative subspace lattices, Indiana Univ. Math. J. 27 (1978), no. 3, 479–490. MR 482264, DOI 10.1512/iumj.1978.27.27032
- Thomas Donnellan, Lattice theory, Pergamon Press, Oxford-New York-Toronto, 1968. MR 0233738
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- P. A. Fillmore and W. E. Longstaff, On isomorphisms of lattices of closed subspaces, Canad. J. Math. 36 (1984), no. 5, 820–829. MR 762744, DOI 10.4153/CJM-1984-048-x
- P. R. Halmos, Reflexive lattices of subspaces, J. London Math. Soc. (2) 4 (1971), 257–263. MR 288612, DOI 10.1112/jlms/s2-4.2.257
- Alan Hopenwasser, The equation $Tx=y$ in a reflexive operator algebra, Indiana Univ. Math. J. 29 (1980), no. 1, 121–126. MR 554821, DOI 10.1512/iumj.1980.29.29009
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 217-228
- MSC: Primary 46C10; Secondary 06B99, 47A15, 47D25
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837808-1
- MathSciNet review: 837808