Orbits of the pseudocircle
HTML articles powered by AMS MathViewer
- by Judy Kennedy and James T. Rogers
- Trans. Amer. Math. Soc. 296 (1986), 327-340
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837815-9
- PDF | Request permission
Abstract:
The following theorem is proved. Theorem. The pseudocircle has uncountably many orbits under the action of its homeomorphism group. Each orbit is the union of uncountably many composants.References
- R. H. Bing, Concerning hereditarily indecomposable continua, Pacific J. Math. 1 (1951), 43–51. MR 43451
- C. E. Burgess, Homogeneous continua which are almost chainable, Canadian J. Math. 13 (1961), 519–528. MR 126255, DOI 10.4153/CJM-1961-043-8
- Wayne Lewis, Continuum theory problems, Proceedings of the 1983 topology conference (Houston, Tex., 1983), 1983, pp. 361–394. MR 765091
- Edward G. Effros, Transformation groups and $C^{\ast }$-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, DOI 10.2307/1970381
- Lawrence Fearnley, The pseudo-circle is not homogeneous, Bull. Amer. Math. Soc. 75 (1969), 554–558. MR 242126, DOI 10.1090/S0002-9904-1969-12241-X
- Lawrence Fearnley, The pseudo-circle is unique, Bull. Amer. Math. Soc. 75 (1969), 398–401. MR 246265, DOI 10.1090/S0002-9904-1969-12193-2
- Charles L. Hagopian, The fixed-point property for almost chainable homogeneous continua, Illinois J. Math. 20 (1976), no. 4, 650–652. MR 418057
- O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric continua, Proc. Amer. Math. Soc. 2 (1951), 173–174. MR 39993, DOI 10.1090/S0002-9939-1951-0039993-2
- Michael Handel, A pathological area preserving $C^{\infty }$ diffeomorphism of the plane, Proc. Amer. Math. Soc. 86 (1982), no. 1, 163–168. MR 663889, DOI 10.1090/S0002-9939-1982-0663889-6
- Wayne Lewis, Almost chainable homogeneous continua are chainable, Houston J. Math. 7 (1981), no. 3, 373–377. MR 640978
- Wayne Lewis, Stable homeomorphisms of the pseudo-arc, Canadian J. Math. 31 (1979), no. 2, 363–374. MR 528817, DOI 10.4153/CJM-1979-041-1 Lex G. Oversteegen and E. D. Tymchatyn, On hereditarily indecomposable continua, preprint.
- James T. Rogers Jr., Homogeneous, separating plane continua are decomposable, Michigan Math. J. 28 (1981), no. 3, 317–322. MR 629364
- James T. Rogers Jr., The pseudo-circle is not homogeneous, Trans. Amer. Math. Soc. 148 (1970), 417–428. MR 256362, DOI 10.1090/S0002-9947-1970-0256362-7
- Roger W. Wardle, On a property of J. L. Kelley, Houston J. Math. 3 (1977), no. 2, 291–299. MR 458379
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 296 (1986), 327-340
- MSC: Primary 54F20; Secondary 54F50
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837815-9
- MathSciNet review: 837815