## Harmonic analysis on Grassmannian bundles

HTML articles powered by AMS MathViewer

- by Robert S. Strichartz PDF
- Trans. Amer. Math. Soc.
**296**(1986), 387-409 Request permission

## Abstract:

The harmonic analysis of the Grassmannian bundle of $k$-dimensional affine subspaces of ${{\mathbf {R}}^n}$, as a homogeneous space of the Euclidean motion group, is given explicitly. This is used to obtain the diagonalization of various generalizations of the Radon transform between such bundles. In abstract form, the same technique gives the Plancherel formula for any unitary representation of a semidirect product $G \times V$ ($V$ a normal abelian subgroup) induced from an irreducible unitary representation of a subgroup of the form $H \times W$.## References

- Marcel Berger,
*Les espaces symétriques noncompacts*, Ann. Sci. École Norm. Sup. (3)**74**(1957), 85–177 (French). MR**0104763** - Mogens Flensted-Jensen,
*Harmonic analysis on semisimple symmetric spaces. A method of duality*, Lie group representations, III (College Park, Md., 1982/1983) Lecture Notes in Math., vol. 1077, Springer, Berlin, 1984, pp. 166–209. MR**765554**, DOI 10.1007/BFb0072339
F. Gonzalez, - F. Gonzalez and S. Helgason,
*Invariant differential operators on Grassmann manifolds*, Adv. in Math.**60**(1986), no. 1, 81–91. MR**839483**, DOI 10.1016/0001-8708(86)90003-4 - Eric L. Grinberg,
*Spherical harmonics and integral geometry on projective spaces*, Trans. Amer. Math. Soc.**279**(1983), no. 1, 187–203. MR**704609**, DOI 10.1090/S0002-9947-1983-0704609-1 - Sigurđur Helgason,
*A duality for symmetric spaces with applications to group representations*, Advances in Math.**5**(1970), 1–154 (1970). MR**263988**, DOI 10.1016/0001-8708(70)90037-X - Sigurđur Helgason,
*Some results on eigenfunctions on symmetric spaces and eigenspace representations*, Math. Scand.**41**(1977), no. 1, 79–89. MR**499955**, DOI 10.7146/math.scand.a-11703 - George W. Mackey,
*The theory of unitary group representations*, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1976. Based on notes by James M. G. Fell and David B. Lowdenslager of lectures given at the University of Chicago, Chicago, Ill., 1955. MR**0396826**
T. Oshima, - Robert S. Strichartz,
*Bochner identities for Fourier transforms*, Trans. Amer. Math. Soc.**228**(1977), 307–327. MR**433147**, DOI 10.1090/S0002-9947-1977-0433147-6 - Robert S. Strichartz,
*$L^p$ estimates for Radon transforms in Euclidean and non-Euclidean spaces*, Duke Math. J.**48**(1981), no. 4, 699–727. MR**782573**, DOI 10.1215/S0012-7094-81-04839-0

*Radon transforms on Grassmann manifolds*, thesis, MIT, 1984.

*Fourier analysis on semisimple symmetric spaces*, Proc. Marseille-Luminy 1980 Conf. (J. Carmona and M. Vergne, eds.), Lecture Notes in Math., vol. 880, Springer-Verlag, Berlin and New York, 1981, pp. 357-369. R. Strichartz,

*The explicit Fourier decomposition of*$L^2(SO(n)/SO(n - m))$, Canad. J. Math.

**24**(1972), 915-925.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**296**(1986), 387-409 - MSC: Primary 43A85; Secondary 22E30, 53C65
- DOI: https://doi.org/10.1090/S0002-9947-1986-0837819-6
- MathSciNet review: 837819