Weighted nonlinear potential theory
Author:
David R. Adams
Journal:
Trans. Amer. Math. Soc. 297 (1986), 73-94
MSC:
Primary 31B25; Secondary 26D10, 31C15, 46E35
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849468-4
MathSciNet review:
849468
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The potential theoretic idea of the "thinness of a set at a given point" is extended to the weighted nonlinear potential theoretic setting--the weights representing in general singularities/degeneracies--and conditions on these weights are given that guarantee when two such notions are equivalent at the given point. When applied to questions of boundary regularity for solutions to (degenerate) elliptic second-order partial differential equations in bounded domains, this result relates the boundary Wiener criterion for one operator to that of another, and in the linear case gives conditions for boundary regular points to be the same for various operators. The methods also yield two weight norm inequalities for Riesz potentials



- [1] D. R. Adams, Traces of potentials arising from translation invariant operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 25 (1971), 203–217. MR 287301
- [2] David R. Adams, A trace inequality for generalized potentials, Studia Math. 48 (1973), 99–105. MR 336316, https://doi.org/10.4064/sm-48-1-99-105
- [3] David R. Adams, Traces of potentials. II, Indiana Univ. Math. J. 22 (1972/73), 907–918. MR 313783, https://doi.org/10.1512/iumj.1973.22.22075
- [4]
-, Lectures on
-potential theory, Umeå Univ. Reports, No. 2, 1981.
- [5] David R. Adams, Capacity and the obstacle problem, Appl. Math. Optim. 8 (1982), no. 1, 39–57. MR 646503, https://doi.org/10.1007/BF01447750
- [6] -, Some weighted estimates for potentials, Abstracts Amer. Math. Soc. 5 (1984), 355.
- [7] David R. Adams and Norman G. Meyers, Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J. 22 (1972/73), 169–197. MR 316724, https://doi.org/10.1512/iumj.1972.22.22015
- [8] David R. Adams and Norman G. Meyers, Bessel potentials. Inclusion relations among classes of exceptional sets, Indiana Univ. Math. J. 22 (1972/73), 873–905. MR 320346, https://doi.org/10.1512/iumj.1973.22.22074
- [9] Patricia Bauman, A Wiener test for nondivergence structure, second-order elliptic equations, Indiana Univ. Math. J. 34 (1985), no. 4, 825–844. MR 808829, https://doi.org/10.1512/iumj.1985.34.34045
- [10] M. Brelot, Sur les ensembles effilés, Bull. Sci. Math. (2) 68 (1944), 12–36 (French). MR 12364
- [11] Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. MR 117349, https://doi.org/10.2307/2372840
- [12] S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff, Some weighted norm inequalities concerning the Schrödinger operators, Comment. Math. Helv. 60 (1985), no. 2, 217–246. MR 800004, https://doi.org/10.1007/BF02567411
- [13]
S. Chanillo and R. Wheeden,
estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators, preprint.
- [14] R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, https://doi.org/10.4064/sm-51-3-241-250
- [15] R. R. Coifman and R. Rochberg, Another characterization of BMO, Proc. Amer. Math. Soc. 79 (1980), no. 2, 249–254. MR 565349, https://doi.org/10.1090/S0002-9939-1980-0565349-8
- [16] E. Fabes, D. Jerison, and C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, vi, 151–182 (English, with French summary). MR 688024
- [17] Charles L. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 129–206. MR 707957, https://doi.org/10.1090/S0273-0979-1983-15154-6
- [18] Angel E. Gatto, Cristian E. Gutiérrez, and Richard L. Wheeden, Fractional integrals on weighted 𝐻^{𝑝} spaces, Trans. Amer. Math. Soc. 289 (1985), no. 2, 575–589. MR 784004, https://doi.org/10.1090/S0002-9947-1985-0784004-1
- [19] Kurt Hansson, Imbedding theorems of Sobolev type in potential theory, Math. Scand. 45 (1979), no. 1, 77–102. MR 567435, https://doi.org/10.7146/math.scand.a-11827
- [20] L. I. Hedberg and Th. H. Wolff, Thin sets in nonlinear potential theory, Ann. Inst. Fourier (Grenoble) 33 (1983), no. 4, 161–187. MR 727526
- [21] Lars Inge Hedberg, Non-linear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299–319. MR 328088, https://doi.org/10.1007/BF01181619
- [22] Lars Hörmander, 𝐿^{𝑝} estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65–78. MR 234002, https://doi.org/10.7146/math.scand.a-10821
- [23] Sergei V. Hruščev, A description of weights satisfying the 𝐴_{∞} condition of Muckenhoupt, Proc. Amer. Math. Soc. 90 (1984), no. 2, 253–257. MR 727244, https://doi.org/10.1090/S0002-9939-1984-0727244-4
- [24] Wladimir Mazja, Zur Theorie Sobolewscher Räume, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 38, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1981 (German). Translated from the Russian by Jürgen Nagel; With English, French and Russian summaries. MR 705788
- [25] W. Maz'ja and V. Havin, Nonlinear potential theory, Russian Math. Surveys 27 (1972), 71-148.
- [26] Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, https://doi.org/10.7146/math.scand.a-10981
- [27] Norman G. Meyers, Continuity properties of potentials, Duke Math. J. 42 (1975), 157–166. MR 367235
- [28] Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, https://doi.org/10.1090/S0002-9947-1972-0293384-6
- [29] Benjamin Muckenhoupt, The equivalence of two conditions for weight functions, Studia Math. 49 (1973/74), 101–106. MR 350297, https://doi.org/10.4064/sm-49-2-101-106
- [30] Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, https://doi.org/10.1090/S0002-9947-1974-0340523-6
- [31] Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, https://doi.org/10.4064/sm-75-1-1-11
- [32] Eric Sawyer, A two weight weak type inequality for fractional integrals, Trans. Amer. Math. Soc. 281 (1984), no. 1, 339–345. MR 719674, https://doi.org/10.1090/S0002-9947-1984-0719674-6
- [33] Guido Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), no. fasc., fasc. 1, 189–258 (French). MR 192177
- [34] Edward W. Stredulinsky, Weighted inequalities and degenerate elliptic partial differential equations, Lecture Notes in Mathematics, vol. 1074, Springer-Verlag, Berlin, 1984. MR 757718
- [35] Neil S. Trudinger, On imbeddings into Orlicz spaces and some applications, J. Math. Mech. 17 (1967), 473–483. MR 0216286, https://doi.org/10.1512/iumj.1968.17.17028
Retrieve articles in Transactions of the American Mathematical Society with MSC: 31B25, 26D10, 31C15, 46E35
Retrieve articles in all journals with MSC: 31B25, 26D10, 31C15, 46E35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1986-0849468-4
Keywords:
Capacity,
thinness,
two-weight embeddings,
boundary regularity
Article copyright:
© Copyright 1986
American Mathematical Society