## Weighted nonlinear potential theory

HTML articles powered by AMS MathViewer

- by David R. Adams PDF
- Trans. Amer. Math. Soc.
**297**(1986), 73-94 Request permission

## Abstract:

The potential theoretic idea of the "thinness of a set at a given point" is extended to the weighted nonlinear potential theoretic setting—the weights representing in general singularities/degeneracies—and conditions on these weights are given that guarantee when two such notions are equivalent at the given point. When applied to questions of boundary regularity for solutions to (degenerate) elliptic second-order partial differential equations in bounded domains, this result relates the boundary Wiener criterion for one operator to that of another, and in the linear case gives conditions for boundary regular points to be the same for various operators. The methods also yield two weight norm inequalities for Riesz potentials \[ {\left ( {\int {{{({I_\alpha }{\ast }f)}^q}v dx} } \right )^{1/q}} \leqslant {\left ( {\int {{f^p}w dx} } \right )^{1/p}},\] $1 < p \leqslant q < \infty$, which at least in the first-order case $(\alpha = 1)$ have found some use in a number of places in analysis.## References

- D. R. Adams,
*Traces of potentials arising from translation invariant operators*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)**25**(1971), 203–217. MR**287301** - David R. Adams,
*A trace inequality for generalized potentials*, Studia Math.**48**(1973), 99–105. MR**336316**, DOI 10.4064/sm-48-1-99-105 - David R. Adams,
*Traces of potentials. II*, Indiana Univ. Math. J.**22**(1972/73), 907–918. MR**313783**, DOI 10.1512/iumj.1973.22.22075
—, - David R. Adams,
*Capacity and the obstacle problem*, Appl. Math. Optim.**8**(1982), no. 1, 39–57. MR**646503**, DOI 10.1007/BF01447750
—, - David R. Adams and Norman G. Meyers,
*Thinness and Wiener criteria for non-linear potentials*, Indiana Univ. Math. J.**22**(1972/73), 169–197. MR**316724**, DOI 10.1512/iumj.1972.22.22015 - David R. Adams and Norman G. Meyers,
*Bessel potentials. Inclusion relations among classes of exceptional sets*, Indiana Univ. Math. J.**22**(1972/73), 873–905. MR**320346**, DOI 10.1512/iumj.1973.22.22074 - Patricia Bauman,
*A Wiener test for nondivergence structure, second-order elliptic equations*, Indiana Univ. Math. J.**34**(1985), no. 4, 825–844. MR**808829**, DOI 10.1512/iumj.1985.34.34045 - M. Brelot,
*Sur les ensembles effilés*, Bull. Sci. Math. (2)**68**(1944), 12–36 (French). MR**12364** - Lennart Carleson,
*An interpolation problem for bounded analytic functions*, Amer. J. Math.**80**(1958), 921–930. MR**117349**, DOI 10.2307/2372840 - S.-Y. A. Chang, J. M. Wilson, and T. H. Wolff,
*Some weighted norm inequalities concerning the Schrödinger operators*, Comment. Math. Helv.**60**(1985), no. 2, 217–246. MR**800004**, DOI 10.1007/BF02567411
S. Chanillo and R. Wheeden, ${L^p}$ - R. R. Coifman and C. Fefferman,
*Weighted norm inequalities for maximal functions and singular integrals*, Studia Math.**51**(1974), 241–250. MR**358205**, DOI 10.4064/sm-51-3-241-250 - R. R. Coifman and R. Rochberg,
*Another characterization of BMO*, Proc. Amer. Math. Soc.**79**(1980), no. 2, 249–254. MR**565349**, DOI 10.1090/S0002-9939-1980-0565349-8 - E. Fabes, D. Jerison, and C. Kenig,
*The Wiener test for degenerate elliptic equations*, Ann. Inst. Fourier (Grenoble)**32**(1982), no. 3, vi, 151–182 (English, with French summary). MR**688024** - Charles L. Fefferman,
*The uncertainty principle*, Bull. Amer. Math. Soc. (N.S.)**9**(1983), no. 2, 129–206. MR**707957**, DOI 10.1090/S0273-0979-1983-15154-6 - Angel E. Gatto, Cristian E. Gutiérrez, and Richard L. Wheeden,
*Fractional integrals on weighted $H^p$ spaces*, Trans. Amer. Math. Soc.**289**(1985), no. 2, 575–589. MR**784004**, DOI 10.1090/S0002-9947-1985-0784004-1 - Kurt Hansson,
*Imbedding theorems of Sobolev type in potential theory*, Math. Scand.**45**(1979), no. 1, 77–102. MR**567435**, DOI 10.7146/math.scand.a-11827 - L. I. Hedberg and Th. H. Wolff,
*Thin sets in nonlinear potential theory*, Ann. Inst. Fourier (Grenoble)**33**(1983), no. 4, 161–187. MR**727526** - Lars Inge Hedberg,
*Non-linear potentials and approximation in the mean by analytic functions*, Math. Z.**129**(1972), 299–319. MR**328088**, DOI 10.1007/BF01181619 - Lars Hörmander,
*$L^{p}$ estimates for (pluri-) subharmonic functions*, Math. Scand.**20**(1967), 65–78. MR**234002**, DOI 10.7146/math.scand.a-10821 - Sergei V. Hruščev,
*A description of weights satisfying the $A_{\infty }$ condition of Muckenhoupt*, Proc. Amer. Math. Soc.**90**(1984), no. 2, 253–257. MR**727244**, DOI 10.1090/S0002-9939-1984-0727244-4 - Wladimir Mazja,
*Zur Theorie Sobolewscher Räume*, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 38, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1981 (German). Translated from the Russian by Jürgen Nagel; With English, French and Russian summaries. MR**705788**
W. Maz’ja and V. Havin, - Norman G. Meyers,
*A theory of capacities for potentials of functions in Lebesgue classes*, Math. Scand.**26**(1970), 255–292 (1971). MR**277741**, DOI 10.7146/math.scand.a-10981 - Norman G. Meyers,
*Continuity properties of potentials*, Duke Math. J.**42**(1975), 157–166. MR**367235** - Benjamin Muckenhoupt,
*Weighted norm inequalities for the Hardy maximal function*, Trans. Amer. Math. Soc.**165**(1972), 207–226. MR**293384**, DOI 10.1090/S0002-9947-1972-0293384-6 - Benjamin Muckenhoupt,
*The equivalence of two conditions for weight functions*, Studia Math.**49**(1973/74), 101–106. MR**350297**, DOI 10.4064/sm-49-2-101-106 - Benjamin Muckenhoupt and Richard Wheeden,
*Weighted norm inequalities for fractional integrals*, Trans. Amer. Math. Soc.**192**(1974), 261–274. MR**340523**, DOI 10.1090/S0002-9947-1974-0340523-6 - Eric T. Sawyer,
*A characterization of a two-weight norm inequality for maximal operators*, Studia Math.**75**(1982), no. 1, 1–11. MR**676801**, DOI 10.4064/sm-75-1-1-11 - Eric Sawyer,
*A two weight weak type inequality for fractional integrals*, Trans. Amer. Math. Soc.**281**(1984), no. 1, 339–345. MR**719674**, DOI 10.1090/S0002-9947-1984-0719674-6 - Guido Stampacchia,
*Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus*, Ann. Inst. Fourier (Grenoble)**15**(1965), no. fasc. 1, 189–258 (French). MR**192177** - Edward W. Stredulinsky,
*Weighted inequalities and degenerate elliptic partial differential equations*, Lecture Notes in Mathematics, vol. 1074, Springer-Verlag, Berlin, 1984. MR**757718**, DOI 10.1007/BFb0101268 - Neil S. Trudinger,
*On imbeddings into Orlicz spaces and some applications*, J. Math. Mech.**17**(1967), 473–483. MR**0216286**, DOI 10.1512/iumj.1968.17.17028

*Lectures on*${L^p}$-

*potential theory*, UmeåUniv. Reports, No. 2, 1981.

*Some weighted estimates for potentials*, Abstracts Amer. Math. Soc.

**5**(1984), 355.

*estimates for fractional integrals and Sobolev inequalities with applications to Schrödinger operators*, preprint.

*Nonlinear potential theory*, Russian Math. Surveys

**27**(1972), 71-148.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**297**(1986), 73-94 - MSC: Primary 31B25; Secondary 26D10, 31C15, 46E35
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849468-4
- MathSciNet review: 849468