## Regularity results for an elliptic-parabolic free boundary problem

HTML articles powered by AMS MathViewer

- by M. Bertsch and J. Hulshof PDF
- Trans. Amer. Math. Soc.
**297**(1986), 337-350 Request permission

## Abstract:

We study an elliptic-parabolic free boundary problem in one space dimension. We give several regularity results for both the weak solution and the free boundary. In particular conditions are given which ensure that the free boundary is a ${C^1}$-curve.## References

- Hans Wilhelm Alt and Stephan Luckhaus,
*Quasilinear elliptic-parabolic differential equations*, Math. Z.**183**(1983), no. 3, 311–341. MR**706391**, DOI 10.1007/BF01176474 - M. Bertsch, M. E. Gurtin, and D. Hilhorst,
*On a degenerate diffusion equation of the form $c(z)_t=\varphi (z_x)_x$ with application to population dynamics*, J. Differential Equations**67**(1987), no. 1, 56–89. MR**878252**, DOI 10.1016/0022-0396(87)90139-2 - Emmanuele DiBenedetto and Ronald Gariepy,
*Local behavior of solutions of an elliptic-parabolic equation*, Arch. Rational Mech. Anal.**97**(1987), no. 1, 1–17. MR**856306**, DOI 10.1007/BF00279843 - Avner Friedman,
*Partial differential equations of parabolic type*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR**0181836** - Morton E. Gurtin, Richard C. MacCamy, and Eduardo A. Socolovsky,
*A coordinate transformation for the porous media equation that renders the free boundary stationary*, Quart. Appl. Math.**42**(1984), no. 3, 345–357. MR**757173**, DOI 10.1090/S0033-569X-1984-0757173-5
J. Hulshof, - J. Hulshof and L. A. Peletier,
*An elliptic-parabolic free boundary problem*, Nonlinear Anal.**10**(1986), no. 12, 1327–1346. MR**869542**, DOI 10.1016/0362-546X(86)90104-5 - O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva,
*Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa*, Izdat. “Nauka”, Moscow, 1967 (Russian). MR**0241821**

*An elliptic-parabolic free boundary problem*:

*continuity of the interface*, Math. Inst. Univ. Leiden, Report No. 10, 1985. —,

*The fluid flow in a partially saturated porous medium*:

*behaviour of the free boundary*, Math. Inst. Univ. Leiden, Report No. 21, 1985.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**297**(1986), 337-350 - MSC: Primary 35R35; Secondary 35D10, 35M05
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849483-0
- MathSciNet review: 849483