## On the Neumann problem for some semilinear elliptic equations and systems of activator-inhibitor type

HTML articles powered by AMS MathViewer

- by Wei-Ming Ni and Izumi Takagi PDF
- Trans. Amer. Math. Soc.
**297**(1986), 351-368 Request permission

## Abstract:

We derive a priori estimates for positive solutions of the Neumann problem for some semilinear elliptic systems (i.e., activator-inhibitor systems in biological pattern formation theory), as well as for semilinear single equations related to such systems. By making use of these a priori estimates, we show that under certain assumptions, there is no positive nonconstant solutions for single equations or for activator-inhibitor systems when the diffusion coefficient (of the activator, in the case of systems) is sufficiently large; we also study the existence of nonconstant solutions for specific domains.## References

- S. Agmon, A. Douglis, and L. Nirenberg,
*Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I*, Comm. Pure Appl. Math.**12**(1959), 623–727. MR**125307**, DOI 10.1002/cpa.3160120405 - Reinhold Böhme,
*Die Lösung der Verzweigungsgleichungen für nichtlineare Eigenwertprobleme*, Math. Z.**127**(1972), 105–126 (German). MR**312348**, DOI 10.1007/BF01112603 - Haïm Brézis and Walter A. Strauss,
*Semi-linear second-order elliptic equations in $L^{1}$*, J. Math. Soc. Japan**25**(1973), 565–590. MR**336050**, DOI 10.2969/jmsj/02540565 - Michael G. Crandall and Paul H. Rabinowitz,
*Bifurcation from simple eigenvalues*, J. Functional Analysis**8**(1971), 321–340. MR**0288640**, DOI 10.1016/0022-1236(71)90015-2
A. Gierer and H. Meinhardt, - Charles B. Morrey Jr.,
*Multiple integrals in the calculus of variations*, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR**0202511** - Wei Ming Ni,
*On the positive radial solutions of some semilinear elliptic equations on $\textbf {R}^{n}$*, Appl. Math. Optim.**9**(1983), no. 4, 373–380. MR**694593**, DOI 10.1007/BF01460131 - Y. Nishiura,
*Global structure of bifurcating solutions of some reaction-diffusion systems*, SIAM J. Math. Anal.**13**(1982), no. 4, 555–593. MR**661590**, DOI 10.1137/0513037 - Paul H. Rabinowitz,
*Some global results for nonlinear eigenvalue problems*, J. Functional Analysis**7**(1971), 487–513. MR**0301587**, DOI 10.1016/0022-1236(71)90030-9 - Paul H. Rabinowitz,
*A bifurcation theorem for potential operators*, J. Functional Analysis**25**(1977), no. 4, 412–424. MR**0463990**, DOI 10.1016/0022-1236(77)90047-7 - Franz Rothe,
*Global solutions of reaction-diffusion systems*, Lecture Notes in Mathematics, vol. 1072, Springer-Verlag, Berlin, 1984. MR**755878**, DOI 10.1007/BFb0099278
G. Stampacchia, - Izumi Takagi,
*A priori estimates for stationary solutions of an activator-inhibitor model due to Gierer and Meinhardt*, Tohoku Math. J. (2)**34**(1982), no. 1, 113–132. MR**651710**, DOI 10.2748/tmj/1178229312 - Izumi Takagi,
*Point-condensation for a reaction-diffusion system*, J. Differential Equations**61**(1986), no. 2, 208–249. MR**823402**, DOI 10.1016/0022-0396(86)90119-1

*A theory of biological pattern formation*, Kybernetik

**12**(1972), 30-39. C. E. Kenig, Private communications. J. Marcinkiewicz,

*Sur les multiplicateurs des séries de Fourier*, Studia Math.

**8**(1939), 78-91. H. Meinhardt,

*Models of biological pattern formation*, Academic Press, London and New York, 1982.

*Équations elliptiques à données discontinues*, Séminaire Schwartz, 1960/61, no. 4.

## Additional Information

- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**297**(1986), 351-368 - MSC: Primary 35J65; Secondary 92A09
- DOI: https://doi.org/10.1090/S0002-9947-1986-0849484-2
- MathSciNet review: 849484