Shape properties of Whitney maps for hyperspaces
HTML articles powered by AMS MathViewer
- by Hisao Kato
- Trans. Amer. Math. Soc. 297 (1986), 529-546
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854083-2
- PDF | Request permission
Abstract:
In this paper, some shape properties of Whitney maps for hyperspaces are investigated. In particular, the following are proved: (1) Let $X$ be a continuum and let $\mathfrak {H}$ be the hyperspace ${2^X}$ or $C(X)$ of $X$ with the Hausdorff metric. Then if $\omega$ is any Whitney map for $\mathfrak {H}$, for any $0 \leqslant s \leqslant t \leqslant \omega (X){\omega ^{ - 1}}(t)$ is an approximate strong deformation retract of ${\omega ^{ - 1}}([s,t])$. In particular, $\operatorname {Sh} ({\omega ^{ - 1}}(t)) = \operatorname {Sh} ({\omega ^{ - 1}}([s,t]))$. (2) Pointed $1$-movability is a Whitney property. (3) For any given ${\text {n}} < \infty$, the property of (cohomological) dimension $\leqslant n$ is a sequential strong Whitney-reversible property. (4) The property of being chainable or circle-like is a sequential strong Whitney-reversible property. (5) The property of being an FAR is a Whitney property for $1$-dimensional continua. Property (2) is an affirmative answer to a problem of J. T. Rogers [16, 112]. Properties (3) and (4) are affirmative answers to problems of S. B. Nadler [20, (14.57) and 21].References
- K. Borsuk, Theory of shape, Lecture Notes Series, No. 28, Aarhus Universitet, Matematisk Institut, Aarhus, 1971. MR 0293602
- C. E. Burgess, Chainable continua and indecomposability, Pacific J. Math. 9 (1959), 653–659. MR 110999
- Jerzy Dydak, A simple proof that pointed FANR-spaces are regular fundamental retracts of ANR’s, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 1, 55–62 (English, with Russian summary). MR 442918
- J. Dydak and J. Segal, Strong shape theory, Dissertationes Math. (Rozprawy Mat.) 192 (1981), 39. MR 627528
- Jack T. Goodykoontz Jr. and Sam B. Nadler Jr., Whitney levels in hyperspaces of certain Peano continua, Trans. Amer. Math. Soc. 274 (1982), no. 2, 671–694. MR 675074, DOI 10.1090/S0002-9947-1982-0675074-7
- Hisao Kato, Concerning hyperspaces of certain Peano continua and strong regularity of Whitney maps, Pacific J. Math. 119 (1985), no. 1, 159–167. MR 797021
- J. L. Kelley, Hyperspaces of a continuum, Trans. Amer. Math. Soc. 52 (1942), 22–36. MR 6505, DOI 10.1090/S0002-9947-1942-0006505-8
- Y. Kodama and J. Ono, On fine shape theory, Fund. Math. 105 (1979/80), no. 1, 29–39. MR 558127, DOI 10.4064/fm-105-1-29-39
- Akira Koyama, A note on some strong Whitney-reversible properties, Tsukuba J. Math. 4 (1980), no. 2, 313–316. MR 623444, DOI 10.21099/tkbjm/1496159183
- J. Krasinkiewicz, On the hyperspaces of snake-like and circle-like continua, Fund. Math. 83 (1974), no. 2, 155–164. MR 418058, DOI 10.4064/fm-83-2-155-164
- J. Krasinkiewicz, On the hyperspaces of hereditarily indecomposable continua, Fund. Math. 84 (1974), no. 3, 175–186. MR 350711, DOI 10.4064/fm-84-3-175-186
- J. Krasinkiewicz, Shape properties of hyperspaces, Fund. Math. 101 (1978), no. 1, 79–91. MR 512244, DOI 10.4064/fm-101-1-79-91
- Józef Krasinkiewicz and Piotr Minc, Generalized paths and pointed $1$-movability, Fund. Math. 104 (1979), no. 2, 141–153. MR 551664, DOI 10.4064/fm-104-2-141-153
- J. Krasinkiewicz and Sam B. Nadler Jr., Whitney properties, Fund. Math. 98 (1978), no. 2, 165–180. MR 467691, DOI 10.4064/fm-98-2-165-180
- A. Y. W. Lau, Whitney continuum in hyperspace, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 187–189. MR 0458384
- Wayne Lewis, Continuum theory problems, Proceedings of the 1983 topology conference (Houston, Tex., 1983), 1983, pp. 361–394. MR 765091
- Sibe Mardešić and Jack Segal, $\varepsilon$-mappings onto polyhedra, Trans. Amer. Math. Soc. 109 (1963), 146–164. MR 158367, DOI 10.1090/S0002-9947-1963-0158367-X
- Sibe Mardešić and Jack Segal, Shape theory, North-Holland Mathematical Library, vol. 26, North-Holland Publishing Co., Amsterdam-New York, 1982. The inverse system approach. MR 676973
- Sam B. Nadler Jr., A characterization of locally connected continua by hyperspace retractions, Proc. Amer. Math. Soc. 67 (1977), no. 1, 167–176. MR 458378, DOI 10.1090/S0002-9939-1977-0458378-6 —, Hyperspaces of sets, Pure and Appl. Math., vol. 49, Dekker, New York, 1978.
- Sam B. Nadler Jr., Whitney-reversible properties, Fund. Math. 109 (1980), no. 3, 235–248. MR 597070, DOI 10.4064/fm-109-3-235-248
- Ann Petrus, Contractibility of Whitney continua in $C(X)$, General Topology Appl. 9 (1978), no. 3, 275–288. MR 510909, DOI 10.1016/0016-660x(78)90031-4
- James T. Rogers Jr., The cone = hyperspace property, Canadian J. Math. 24 (1972), 279–285. MR 295302, DOI 10.4153/CJM-1972-022-8
- James T. Rogers Jr., Continua with cones homeomorphic to hyperspaces, General Topology and Appl. 3 (1973), 283–289. MR 362257
- James T. Rogers Jr., Dimension and the Whitney subcontinua of $C(X)$, General Topology and Appl. 6 (1976), no. 1, 91–100. MR 420536
- J. T. Rogers Jr., Dimension of hyperspaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 177–179 (English, with Russian summary). MR 370535
- James T. Rogers Jr., Embedding the hyperspaces of circle-like plane continua, Proc. Amer. Math. Soc. 29 (1971), 165–168. MR 273578, DOI 10.1090/S0002-9939-1971-0273578-0
- James T. Rogers Jr., Hyperspaces of arc-like and circle-like continua, Topology Conference (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973) Lecture Notes in Math., Vol. 375, Springer, Berlin, 1974, pp. 231–235. MR 0356001 —, Whitney continua in the hyperspaces $C(X)$, Pacific J. Math. 58 (1975), 569-584.
- L. E. Ward Jr., Extending Whitney maps, Pacific J. Math. 93 (1981), no. 2, 465–469. MR 623577 H. Whitney, Regular families of curves. I, Proc. Nat. Acad. Sci. U.S.A. 18 (1932), 275-278. M. Wojdyslawski, Retracte absolus et hyperspaces des continus, Fund. Math. 32 (1939), 184-192. E. Abo-Zeid, Some results in continua theory and hyperspaces, Dissertation, Univ. of Saskatchewan, Saskatoon, Canada.
Bibliographic Information
- © Copyright 1986 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 297 (1986), 529-546
- MSC: Primary 54B20
- DOI: https://doi.org/10.1090/S0002-9947-1986-0854083-2
- MathSciNet review: 854083