Bordism of semifree circle actions on Spin manifolds
Author:
Lucília Daruiz Borsari
Journal:
Trans. Amer. Math. Soc. 301 (1987), 479-487
MSC:
Primary 57R85; Secondary 57R20, 58G10
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882700-0
MathSciNet review:
882700
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Using traditional methods in bordism theory, an almost complete description of the rational bordism groups of semifree circle actions on Spin manifolds is given. The single remaining problem, to describe the ideal of , generated by bordism classes of Spin manifolds admitting a semifree action of odd type, has been recently solved by S. Ochanine
.
- [A-B] M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451–491. MR 232406, https://doi.org/10.2307/1970721
- [A-H] Michael Atiyah and Friedrich Hirzebruch, Spin-manifolds and group actions, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 18–28. MR 0278334
- [B] L. D. Borsari, Bordism groups of semi-free circle actions on Spin manifolds, Ph.D. thesis, Rutgers Univ., October 1985.
- [C] Pierre E. Conner, Differentiable periodic maps, 2nd ed., Lecture Notes in Mathematics, vol. 738, Springer, Berlin, 1979. MR 548463
- [C-F] P. E. Conner and E. E. Floyd, Torsion in 𝑆𝑈-bordism, Mem. Amer. Math. Soc. No. 60 (1966), 74. MR 0189044
- [C-H-S] S. S. Chern, F. Hirzebruch, and J.-P. Serre, On the index of a fibered manifold, Proc. Amer. Math. Soc. 8 (1957), 587–596. MR 87943, https://doi.org/10.1090/S0002-9939-1957-0087943-0
- [K] Yasuhiko Kitada, Semi-free circle actions on 𝑆𝑝𝑖𝑛^{𝑐}-manifolds, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 3, 601–617. MR 0372887, https://doi.org/10.2977/prims/1195191884
- [L-S] Peter S. Landweber and Robert E. Stong, Circle actions on Spin manifolds and characteristic numbers, Topology 27 (1988), no. 2, 145–161. MR 948178, https://doi.org/10.1016/0040-9383(88)90034-1
- [L-W] Connor Lazarov and Arthur G. Wasserman, Free actions and complex cobordism, Proc. Amer. Math. Soc. 47 (1975), 215–217. MR 350759, https://doi.org/10.1090/S0002-9939-1975-0350759-2
- [M-S] John W. Milnor and James D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76. MR 0440554
- [O] S. Ochanine, Sur les genres multiplicatifs défini par des intégrales (to appear).
- [St] Robert E. Stong, Notes on cobordism theory, Mathematical notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968. MR 0248858
- [Sz] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math. 86 (1964), 685–697. MR 172303, https://doi.org/10.2307/2373152
- [U] Fuichi Uchida, Cobordism groups of semi-free 𝑆¹- and 𝑆³-actions, Osaka Math. J. 7 (1970), 345–351. MR 278338
- [W] Edward Witten, Fermion quantum numbers in Kaluza-Klein theory, Shelter Island II (Shelter Island, N.Y., 1983) MIT Press, Cambridge, MA, 1985, pp. 227–277. MR 830167
Retrieve articles in Transactions of the American Mathematical Society with MSC: 57R85, 57R20, 58G10
Retrieve articles in all journals with MSC: 57R85, 57R20, 58G10
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1987-0882700-0
Article copyright:
© Copyright 1987
American Mathematical Society