On the Stickelberger ideal and the relative class number
HTML articles powered by AMS MathViewer
- by Tatsuo Kimura and Kuniaki Horie
- Trans. Amer. Math. Soc. 302 (1987), 727-739
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891643-8
- PDF | Request permission
Abstract:
Let $k$ be any imaginary abelian field, $R$ the integral group ring of $G = {\text {Gal}}(k/\mathbb {Q})$, and $S$ the Stickelberger ideal of $k$. Roughly speaking, the relative class number ${h^ - }$ of $k$ is expressed as the index of $S$ in a certain ideal $A$ of $R$ described by means of $G$ and the complex conjugation of $k;{c^ - }{h^ - } = [A:S]$, with a rational number ${c^ - }$ in $\frac {1} {2}\mathbb {N} = \{ n/2;n \in \mathbb {N}\}$, which can be described without ${h^ - }$ and is of lower than ${h^ - }$ if the conductor of $k$ is sufficiently large (cf. [6, 9, 10]; see also [5]). We shall prove that $2{c^ - }$, a natural number, divides $2{([k:\mathbb {Q}]/2)^{[k:\mathbb {Q}]/2}}$. In particular, if $k$ varies through a sequence of imaginary abelian fields of degrees bounded, then ${c^ - }$ takes only a finite number of values. On the other hand, it will be shown that ${c^ - }$ can take any value in $\frac {1} {2}\mathbb {N}$ when $k$ ranges over all imaginary abelian fields. In this connection, we shall also make a simple remark on the divisibility for the relative class number of cyclotomic fields.References
- Gary Cornell, Abhyankar’s lemma and the class group, Number theory, Carbondale 1979 (Proc. Southern Illinois Conf., Southern Illinois Univ., Carbondale, Ill., 1979) Lecture Notes in Math., vol. 751, Springer, Berlin, 1979, pp. 82–88. MR 564924
- Gary Cornell and Lawrence C. Washington, Class numbers of cyclotomic fields, J. Number Theory 21 (1985), no. 3, 260–274. MR 814005, DOI 10.1016/0022-314X(85)90055-1
- Frank Gerth III, Asymptotic results for class number divisibility in cyclotomic fields, Canad. Math. Bull. 26 (1983), no. 4, 464–472. MR 716587, DOI 10.4153/CMB-1983-075-3
- Helmut Hasse, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952 (German). MR 0049239
- Kuniaki Horie, On the index of the Stickelberger ideal and the cyclotomic regulator, J. Number Theory 20 (1985), no. 2, 238–253. MR 790784, DOI 10.1016/0022-314X(85)90042-3
- Kenkichi Iwasawa, A class number formula for cyclotomic fields, Ann. of Math. (2) 76 (1962), 171–179. MR 154862, DOI 10.2307/1970270
- Tatsuo Kimura and Kuniaki Horie, On the Stickelberger ideal and the relative class number, Proc. Japan Acad. Ser. A Math. Sci. 58 (1982), no. 4, 170–171. MR 664565
- J. Myron Masley and Hugh L. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286(287) (1976), 248–256. MR 429824
- W. Sinnott, On the Stickelberger ideal and the circular units of a cyclotomic field, Ann. of Math. (2) 108 (1978), no. 1, 107–134. MR 485778, DOI 10.2307/1970932
- W. Sinnott, On the Stickelberger ideal and the circular units of an abelian field, Invent. Math. 62 (1980/81), no. 2, 181–234. MR 595586, DOI 10.1007/BF01389158
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 302 (1987), 727-739
- MSC: Primary 11R18; Secondary 11R29
- DOI: https://doi.org/10.1090/S0002-9947-1987-0891643-8
- MathSciNet review: 891643