$p$-ranks and automorphism groups of algebraic curves
HTML articles powered by AMS MathViewer
- by Shōichi Nakajima
- Trans. Amer. Math. Soc. 303 (1987), 595-607
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902787-6
- PDF | Request permission
Abstract:
Let $X$ be an irreducible complete nonsingular curve of genus $g$ over an algebraically closed field $k$ of positive characteristic $p$. If $g \geqslant 2$, the automorphism group $\operatorname {Aut} (X)$ of $X$ is known to be a finite group, and moreover its order is bounded from above by a polynomial in $g$ of degree four (Stichtenoth). In this paper we consider the $p$-rank $\gamma$ of $X$ and investigate relations between $\gamma$ and $\operatorname {Aut} (X)$. We show that $\gamma$ affects the order of a Sylow $p$-subgroup of $\operatorname {Aut} (X)\;(\S 3)$ and that an inequality $|\operatorname {Aut} (X)| \leqslant 84(g - 1)g$ holds for an ordinary (i.e. $\gamma = g$) curve $X (\S 4)$.References
- H. Hasse, Theorie der relativ-zyklischen algebraischen Funktionenkörper, insbesondere bei endlichem Konstantenkörper, J. Reine Angew. Math. 172 (1934), 37-54 = Math. Abh. Band 2, 133-150.
- Helmut Hasse and Ernst Witt, Zyklische unverzweigte Erweiterungskörper vom Primzahlgrade $p$ über einem algebraischen Funktionenkörper der Charakteristik $p$, Monatsh. Math. Phys. 43 (1936), no. 1, 477–492 (German). MR 1550551, DOI 10.1007/BF01707628
- Hans-Wolfgang Henn, Funktionenkörper mit grosser Automorphismengruppe, J. Reine Angew. Math. 302 (1978), 96–115 (German). MR 511696, DOI 10.1515/crll.1978.302.96
- Manohar L. Madan, On a theorem of M. Deuring and I. R. Šafarevič, Manuscripta Math. 23 (1977/78), no. 1, 91–102. MR 460335, DOI 10.1007/BF01168587
- Daniel J. Madden and Robert C. Valentini, The group of automorphisms of algebraic function fields, J. Reine Angew. Math. 343 (1983), 162–168. MR 705883, DOI 10.1515/crll.1983.343.162
- Sh\B{o}ichi Nakajima, Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Math. Z. 190 (1985), no. 4, 559–566. MR 808922, DOI 10.1007/BF01214754
- Peter Roquette, Abschätzung der Automorphismenanzahl von Funktionenkörpern bei Primzahlcharakteristik, Math. Z. 117 (1970), 157–163 (German). MR 279100, DOI 10.1007/BF01109838 I. R. Šafarevič, On $p$-extensions, Amer. Math. Soc. Transl. (2) 4 (1954), 59-72.
- Jean-Pierre Serre, Corps locaux, Publications de l’Université de Nancago, No. VIII, Hermann, Paris, 1968 (French). Deuxième édition. MR 0354618
- Balwant Singh, On the group of automorphisms of function field of genus at least two, J. Pure Appl. Algebra 4 (1974), 205–229. MR 360600, DOI 10.1016/0022-4049(74)90022-X H. Stichtenoth, Über die Automorphismengruppe eines algebraischen Funktionenkörpers von Primzahlcharakteristik, I, II, Arch. Math. 24 (1973), 527-544, 615-631.
- Doré Subrao, The $p$-rank of Artin-Schreier curves, Manuscripta Math. 16 (1975), no. 2, 169–193. MR 376693, DOI 10.1007/BF01181639
- Francis J. Sullivan, $p$-torsion in the class group of curves with too many automorphisms, Arch. Math. (Basel) 26 (1975), 253–261. MR 393035, DOI 10.1007/BF01229737 A. Wiman, Über die hyperelliptischen Curven und diejenigen von Geschlechte $P = 3$ welche eindeutigen Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Vetenskaps-Akademiens Hadlingar 21 (1895-96), 1-23.
Bibliographic Information
- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 303 (1987), 595-607
- MSC: Primary 14H30
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902787-6
- MathSciNet review: 902787