## Pure subgroups of torsion-free groups

HTML articles powered by AMS MathViewer

- by Paul Hill and Charles Megibben
- Trans. Amer. Math. Soc.
**303**(1987), 765-778 - DOI: https://doi.org/10.1090/S0002-9947-1987-0902797-9
- PDF | Request permission

## Abstract:

In this paper, we show that certain new notions of purity stronger than the classical concept are relevant to the study of torsion-free abelian groups. In particular, implications of ${\ast }$-purity, a concept introduced in one of our recent papers, are investigated. We settle an open question (posed by Nongxa) by proving that the union of an ascending countable sequence of ${\ast }$-pure subgroups is completely decomposable provided the subgroups are. This result is false for ordinary purity. The principal result of the paper, however, deals with $\Sigma$-purity, a concept stronger than ${\ast }$-purity but weaker than the usual notion of strong purity. Our main theorem, which has a number of corollaries including the recent result of Nongxa that strongly pure subgroups of separable groups are again separable, states that a $\Sigma$-pure subgroup of a $k$-group is itself a $k$-group. Among other results is the negative resolution of the conjecture (valid in the countable case) that a strongly pure subgroup of a completely decomposable group is again completely decomposable.## References

- U. Albrecht and P. Hill,
- David M. Arnold,
*Pure subgroups of finite rank completely decomposable groups*, Abelian group theory (Oberwolfach, 1981) Lecture Notes in Math., vol. 874, Springer, Berlin-New York, 1981, pp. 1–31. MR**645913** - D. Arnold and C. Vinsonhaler,
*Pure subgroups of finite rank completely decomposable groups. II*, Abelian group theory (Honolulu, Hawaii, 1983) Lecture Notes in Math., vol. 1006, Springer, Berlin, 1983, pp. 97–143. MR**722614**, DOI 10.1007/BFb0103698 - Reinhold Baer,
*Abelian groups without elements of finite order*, Duke Math. J.**3**(1937), no. 1, 68–122. MR**1545974**, DOI 10.1215/S0012-7094-37-00308-9 - M. C. R. Butler,
*A class of torsion-free abelian groups of finite rank*, Proc. London Math. Soc. (3)**15**(1965), 680–698. MR**218446**, DOI 10.1112/plms/s3-15.1.680 - Manfred Dugas and K. M. Rangaswamy,
*On torsion-free abelian $k$-groups*, Proc. Amer. Math. Soc.**99**(1987), no. 3, 403–408. MR**875371**, DOI 10.1090/S0002-9939-1987-0875371-6 - L. Fuchs,
*Summands of separable abelian groups*, Bull. London Math. Soc.**2**(1970), 205–208. MR**268271**, DOI 10.1112/blms/2.2.205 - Phillip A. Griffith,
*Infinite abelian group theory*, University of Chicago Press, Chicago, Ill.-London, 1970. MR**0289638** - Paul Hill,
*Criteria for freeness in groups and valuated vector spaces*, Abelian group theory (Proc. Second New Mexico State Univ. Conf., Las Cruces, N.M., 1976) Lecture Notes in Math., Vol. 616, Springer, Berlin, 1977, pp. 140–157. MR**0486206** - Paul Hill,
*Criteria for total projectivity*, Canadian J. Math.**33**(1981), no. 4, 817–825. MR**634140**, DOI 10.4153/CJM-1981-063-x - Paul Hill and Charles Megibben,
*Torsion free groups*, Trans. Amer. Math. Soc.**295**(1986), no. 2, 735–751. MR**833706**, DOI 10.1090/S0002-9947-1986-0833706-8 - Paul Hill and Charles Megibben,
*Axiom $3$ modules*, Trans. Amer. Math. Soc.**295**(1986), no. 2, 715–734. MR**833705**, DOI 10.1090/S0002-9947-1986-0833705-6 - S. Janakiraman and K. M. Rangaswamy,
*Strongly pure subgroups of abelian groups*, Group theory (Proc. Miniconf., Australian Nat. Univ., Canberra, 1975) Lecture Notes in Math., Vol. 573, Springer, Berlin, 1977, pp. 57–65. MR**0447436** - Irving Kaplansky,
*Projective modules*, Ann. of Math. (2)**68**(1958), 372–377. MR**0100017**, DOI 10.2307/1970252 - Loyiso G. Nongxa,
*Strongly pure subgroups of separable torsion-free abelian groups*, Trans. Amer. Math. Soc.**290**(1985), no. 1, 363–373. MR**787970**, DOI 10.1090/S0002-9947-1985-0787970-3 - Fred Richman,
*An extension of the theory of completely decomposable torsion-free abelian groups*, Trans. Amer. Math. Soc.**279**(1983), no. 1, 175–185. MR**704608**, DOI 10.1090/S0002-9947-1983-0704608-X
A. Shiflet,

*Butler groups of finite rank and axiom*$3$ (to appear).

*Almost completely decomposable groups*, Dissertation, Vanderbilt Univ., 1976.

## Bibliographic Information

- © Copyright 1987 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**303**(1987), 765-778 - MSC: Primary 20K20; Secondary 20K27
- DOI: https://doi.org/10.1090/S0002-9947-1987-0902797-9
- MathSciNet review: 902797