Sharp distortion theorems for quasiconformal mappings
HTML articles powered by AMS MathViewer
- by G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen
- Trans. Amer. Math. Soc. 305 (1988), 95-111
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920148-1
- PDF | Request permission
Abstract:
Continuing their earlier work on distortion theory, the authors prove some dimension-free distortion theorems for $K$-quasiconformal mappings in ${R^n}$. For example, one of the present results is the following sharp variant of the Schwarz lemma: If $f$ is a $K$-quasiconformal self-mapping of the unit ball ${B^n}$, $n \geqslant 2$, with $f(0) = 0$, then ${4^{1 - {K^2}}}|x{|^K} \leqslant |f(x)| \leqslant {4^{1 - 1/{K^2}}}|x{|^{1/K}}$ for all $x$ in ${B^n}$.References
- Lars V. Ahlfors, On quasiconformal mappings, J. Analyse Math. 3 (1954), 1–58; correction, 207–208. MR 64875, DOI 10.1007/BF02803585 —, Möbius transformations in several variables, Univ. of Minnesota Lecture Notes, Minneapolis, 1981.
- Glen D. Anderson, Dependence on dimension of a constant related to the Grötzsch ring, Proc. Amer. Math. Soc. 61 (1976), no. 1, 77–80 (1977). MR 442217, DOI 10.1090/S0002-9939-1976-0442217-2
- G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Dimension-free quasiconformal distortion in $n$-space, Trans. Amer. Math. Soc. 297 (1986), no. 2, 687–706. MR 854093, DOI 10.1090/S0002-9947-1986-0854093-5
- Alan F. Beardon, The geometry of discrete groups, Graduate Texts in Mathematics, vol. 91, Springer-Verlag, New York, 1983. MR 698777, DOI 10.1007/978-1-4612-1146-4
- E. David Callender, Hölder continuity of $n$-dimensional quasi-conformal mappings, Pacific J. Math. 10 (1960), 499–515. MR 118794
- C. Carathéodory, Über das Maximum des absoluten Betrages des Differenzenquotienten für unimodular beschränkte Funktionen, Math. Z. 47 (1941), 468–488 (German). MR 6580, DOI 10.1007/BF01180975
- F. W. Gehring, Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc. 103 (1962), 353–393. MR 139735, DOI 10.1090/S0002-9947-1962-0139735-8
- F. W. Gehring and B. G. Osgood, Uniform domains and the quasihyperbolic metric, J. Analyse Math. 36 (1979), 50–74 (1980). MR 581801, DOI 10.1007/BF02798768
- F. W. Gehring and B. P. Palka, Quasiconformally homogeneous domains, J. Analyse Math. 30 (1976), 172–199. MR 437753, DOI 10.1007/BF02786713
- Joseph Hersch and Albert Pfluger, Généralisation du lemme de Schwarz et du principe de la mesure harmonique pour les fonctions pseudo-analytiques, C. R. Acad. Sci. Paris 234 (1952), 43–45 (French). MR 46452
- Tadeusz Iwaniec, Some aspects of partial differential equations and quasiregular mappings, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983) PWN, Warsaw, 1984, pp. 1193–1208. MR 804770
- O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Die Grundlehren der mathematischen Wissenschaften, Band 126, Springer-Verlag, New York-Heidelberg, 1973. Translated from the German by K. W. Lucas. MR 0344463
- Olli Lehto, K. I. Virtanen, and Jussi Väisälä, Contributions to the distortion theory of quasiconformal mappings, Ann. Acad. Sci. Fenn. Ser. A I 273 (1959), 14. MR 0122990
- Gaven J. Martin and Brad G. Osgood, The quasihyperbolic metric and associated estimates on the hyperbolic metric, J. Analyse Math. 47 (1986), 37–53. MR 874043, DOI 10.1007/BF02792531
- O. Martio, S. Rickman, and J. Väisälä, Distortion and singularities of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 465 (1970), 13. MR 0267093
- Ju. G. Rešetnjak, A sufficient condition for Hölder continuity of a mapping, Soviet Math. Dokl. 1 (1960), 76–78. MR 0122941 —, Bounds on moduli of continuity for certain mappings, Siberian Math. J. 7 (1966), 879-886.
- Yu. G. Reshetnyak, Prostranstvennye otobrazheniya s ogranichennym iskazheniem, “Nauka” Sibirsk. Otdel., Novosibirsk, 1982 (Russian). MR 665590
- B. V. Šabat, On the theory of quasiconformal mappings in space, Soviet Math. Dokl. 1 (1960), 730–733. MR 0130370 A. V. Sychev, Moduli and quasiconformal mappings in space, "Nauka" Sibirsk. Otdel., Novosibirsk, 1983. (Russian) J. Väisälä, Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin, Heidelberg and New York, 1971.
- Matti Vuorinen, Capacity densities and angular limits of quasiregular mappings, Trans. Amer. Math. Soc. 263 (1981), no. 2, 343–354. MR 594412, DOI 10.1090/S0002-9947-1981-0594412-6
- Matti Vuorinen, Conformal invariants and quasiregular mappings, J. Analyse Math. 45 (1985), 69–115. MR 833408, DOI 10.1007/BF02792546 —, On Teichmüller’s modulus problem in ${R^n}$ (in preparation).
- Wang Chuan-fang, On the precision of Mori’s theorem in $Q$-mapping, Sci. Record (N.S.) 4 (1960), 329–333. MR 136732
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 305 (1988), 95-111
- MSC: Primary 30C60; Secondary 30C75
- DOI: https://doi.org/10.1090/S0002-9947-1988-0920148-1
- MathSciNet review: 920148