On the second fundamental theorem of Nevanlinna
HTML articles powered by AMS MathViewer
- by Arturo Fernández Arias PDF
- Trans. Amer. Math. Soc. 306 (1988), 141-163 Request permission
Abstract:
It is shown that a condition on the size of the exceptional set in the second fundamental theorem of Nevanlinna cannot be improved. The method is based on a construction of Hayman and also makes use of a quantitative version of a result of F. Nevanlinna about the growth of the characteristic function of a meromorophic function omitting a finite number of pointsReferences
- Arturo Fernández Arias, Some results about the size of the exceptional set in Nevanlinna’s second fundamental theorem, Collect. Math. 37 (1986), no. 3, 229–238. MR 923005
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- W. K. Hayman, Die Nevanlinna-Charakteristik von meromorphen Funktionen und ihren Integralen, Festband 70. Geburtstag R. Nevanlinna, Springer, Berlin, 1966, pp. 16–20 (German). MR 0206288
- W. K. Hayman, Multivalent functions, Cambridge Tracts in Mathematics and Mathematical Physics, No. 48, Cambridge University Press, Cambridge, 1958. MR 0108586
- W. K. Hayman, On the Valiron deficiencies of integral functions of infinite order, Ark. Mat. 10 (1972), 163–172. MR 324040, DOI 10.1007/BF02384807
- Joachim A. Hempel, Precise bounds in the theorems of Landau and Schottky, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 421–424. MR 623485
- Frithiof Nevanlinna, Über die Anwendung einer Klasse uniformisierender Tranzendenten zur Untersuchung der Wertverteilung analytischer Funktionen, Acta Math. 50 (1927), no. 1, 159–188 (German). MR 1555255, DOI 10.1007/BF02421323 R. Nevanlinna, Le théorème de Picard-Borel et la théorie des fonctions méromorphes, Gauthier-Villars, Paris, 1920.
- Rolf Nevanlinna, Analytic functions, Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. Translated from the second German edition by Phillip Emig. MR 0279280, DOI 10.1007/978-3-642-85590-0
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 141-163
- MSC: Primary 30D35
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927686-6
- MathSciNet review: 927686