The cohomology representation of an action of $C_ p$ on a surface
HTML articles powered by AMS MathViewer
- by Peter Symonds
- Trans. Amer. Math. Soc. 306 (1988), 389-400
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927696-9
- PDF | Request permission
Abstract:
When a finite group $G$ acts on a surface $S$, then ${H^1}(S; {\mathbf {Z}})$ posseses naturally the structure of a ${\mathbf {Z}}G$-module with invariant symplectic inner product. In the case of a cyclic group of odd prime order we describe explicitly this symplectic inner product space in terms of the fixed-point data of the action.References
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560 J. P. Alexander, P. E. Conner and G. C. Hamrick, Odd order group actions and Witt classification of inner products, Lecture Notes in Math. vol. 625, Springer, Berlin, Heidelberg and New York, 1963.
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546–604. MR 236952, DOI 10.2307/1970717
- P. E. Conner, Notes on the Witt classification of Hermitian innerproduct spaces over a ring of algebraic integers, University of Texas Press, Austin, Tex., 1979. MR 551205
- Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0144979
- Clifford J. Earle, On the moduli of closed Riemann surfaces with symmetries, Advances in the Theory of Riemann Surfaces (Proc. Conf., Stony Brook, N.Y., 1969) Ann. of Math. Studies, No. 66, Princeton Univ. Press, Princeton, N.J., 1971, pp. 119–130. MR 0296282
- Allan L. Edmonds and John H. Ewing, Surface symmetry and homology, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 1, 73–77. MR 809500, DOI 10.1017/S0305004100063945
- John Ewing, The image of the Atiyah-Bott map, Math. Z. 165 (1979), no. 1, 53–71. MR 521520, DOI 10.1007/BF01175129
- Hershel M. Farkas and Irwin Kra, Riemann surfaces, Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York-Berlin, 1980. MR 583745, DOI 10.1007/978-1-4684-9930-8
- H. Glover and G. Mislin, Torsion in the mapping class group and its cohomology, Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), 1987, pp. 177–189. MR 885103, DOI 10.1016/0022-4049(87)90023-5
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947 J. Nielsen, Die Sturctur periodischer Transformationer von Flächen, Danske Vid. Selsk. Mat.-Fys. Medd. 15 (1937), 1-77.
- Jakob Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23–115 (German). MR 13306, DOI 10.1007/BF02404101
- O. T. O’Meara, Introduction to quadratic forms, Die Grundlehren der mathematischen Wissenschaften, Band 117, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0152507, DOI 10.1007/978-3-642-62031-7
- Richard G. Swan, Induced representations and projective modules, Ann. of Math. (2) 71 (1960), 552–578. MR 138688, DOI 10.2307/1969944
- Heiner Zieschang, Finite groups of mapping classes of surfaces, Lecture Notes in Mathematics, vol. 875, Springer-Verlag, Berlin, 1981. MR 643627, DOI 10.1007/BFb0090465
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 306 (1988), 389-400
- MSC: Primary 57S17; Secondary 20C10, 57M12
- DOI: https://doi.org/10.1090/S0002-9947-1988-0927696-9
- MathSciNet review: 927696