Weighted norm inequalities for the Riemann-Liouville and Weyl fractional integral operators
Authors:
K. F. Andersen and E. T. Sawyer
Journal:
Trans. Amer. Math. Soc. 308 (1988), 547-558
MSC:
Primary 26A33; Secondary 26D10, 42B25, 47G05
DOI:
https://doi.org/10.1090/S0002-9947-1988-0930071-4
MathSciNet review:
930071
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The weight functions $u(x)$ for which ${R_\alpha }$, the Riemann-Liouville fractional integral operator of order $\alpha > 0$, is bounded from ${L^p}({u^p} dx)$ to ${L^q}({u^q} dx)$, $1 < p < 1/\alpha$, $1/q = 1/p - \alpha$, are characterized. Further, given $p$,$q$ with $1/q \geqslant 1/p - \alpha$, the weight functions $u > 0$ a.e. (resp. $v < \infty$ a.e.) for which there is $v < \infty$ a.e. (resp. $u > 0$ a.e.) so that ${R_\alpha }$ is bounded from ${L^p}({v^p} dx)$ to ${L^q}({u^q} dx)$ are characterized. Analogous results are obtained for the Weyl fractional integral. The method involves the use of complex interpolation of analytic families of operators to obtain similar results for fractional "one-sided" maximal function operators which are of independent interest.
- K. F. Andersen, Weighted inequalities for fractional integrals, Fractional calculus (Glasgow, 1984) Res. Notes in Math., vol. 138, Pitman, Boston, MA, 1985, pp. 12–25. MR 860083
- K. F. Andersen and H. P. Heinig, Weighted norm inequalities for certain integral operators, SIAM J. Math. Anal. 14 (1983), no. 4, 834–844. MR 704496, DOI https://doi.org/10.1137/0514064
- Kenneth F. Andersen and Benjamin Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. MR 665888, DOI https://doi.org/10.4064/sm-72-1-9-26
- J. Scott Bradley, Hardy inequalities with mixed norms, Canad. Math. Bull. 21 (1978), no. 4, 405–408. MR 523580, DOI https://doi.org/10.4153/CMB-1978-071-7 L. Carleson and P. Jones, Weighted norm inequalities and a theorem of Koosis, Mittag-Leffler Inst. Rep. 2 (1981).
- Angel E. Gatto and Cristian E. Gutiérrez, On weighted norm inequalities for the maximal function, Studia Math. 76 (1983), no. 1, 59–62. MR 728196, DOI https://doi.org/10.4064/sm-76-1-59-62 G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, 1967.
- Benjamin Muckenhoupt, Weighted norm inequalities for classical operators, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 69–83. MR 545240
- Benjamin Muckenhoupt and Richard Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261–274. MR 340523, DOI https://doi.org/10.1090/S0002-9947-1974-0340523-6
- Eric T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc. 308 (1988), no. 2, 533–545. MR 930072, DOI https://doi.org/10.1090/S0002-9947-1988-0930072-6
- E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), no. 1, 53–61. MR 849466, DOI https://doi.org/10.1090/S0002-9947-1986-0849466-0
- Eric T. Sawyer, Weighted norm inequalities for fractional maximal operators, 1980 Seminar on Harmonic Analysis (Montreal, Que., 1980) CMS Conf. Proc., vol. 1, Amer. Math. Soc., Providence, R.I., 1981, pp. 283–309. MR 670111
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI https://doi.org/10.4064/sm-75-1-1-11
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI https://doi.org/10.1090/S0002-9947-1956-0082586-0
- G. V. Welland, Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 51 (1975), 143–148. MR 369641, DOI https://doi.org/10.1090/S0002-9939-1975-0369641-X
- Wo Sang Young, Weighted norm inequalities for the Hardy-Littlewood maximal function, Proc. Amer. Math. Soc. 85 (1982), no. 1, 24–26. MR 647890, DOI https://doi.org/10.1090/S0002-9939-1982-0647890-4
Retrieve articles in Transactions of the American Mathematical Society with MSC: 26A33, 26D10, 42B25, 47G05
Retrieve articles in all journals with MSC: 26A33, 26D10, 42B25, 47G05
Additional Information
Article copyright:
© Copyright 1988
American Mathematical Society