Function spaces generated by blocks associated with spheres, Lie groups and spaces of homogeneous type
Author:
Aleš Založnik
Journal:
Trans. Amer. Math. Soc. 309 (1988), 139-164
MSC:
Primary 43A85; Secondary 40J05, 43A77, 46E30
DOI:
https://doi.org/10.1090/S0002-9947-1988-0957065-7
MathSciNet review:
957065
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Functions generated by blocks were introduced by M. Taibleson and G. Weiss in the setting of the one-dimensional torus [TW1]. They showed that these functions formed a space "close" to the class of integrable functions for which we have almost everywhere convergence of Fourier series. Together with S. Lu [LTW] they extended the theory to the
-dimensional torus where this convergence result (for Bochner-Riesz means at the critical index) is valid provided we also restrict ourselves to
. In this paper we show that this restriction is not needed if the underlying domain is a compact semisimple Lie group (or certain more general spaces of a homogeneous type). Other considerations (for example, these spaces form an interesting family of quasi-Banach spaces; they are connected with the notion of entropy) guide one in their study. We show how this point of view can be exploited in the setting of more general underlying domains.
- [B1] Salomon Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), no. 2, 175–207. MR 1501870, https://doi.org/10.1090/S0002-9947-1936-1501870-1
- [B2] -, Summation of derived Fourier series, Ann. of Math. 37 (1936), 345-356.
- [BC] Aline Bonami and Jean-Louis Clerc, Sommes de Cesàro et multiplicateurs des développements en harmoniques sphériques, Trans. Amer. Math. Soc. 183 (1973), 223–263 (French). MR 338697, https://doi.org/10.1090/S0002-9947-1973-0338697-5
- [BD] Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344
- [C] Jean-Louis Clerc, Sommes de Riesz et multiplicateurs sur un groupe de Lie compact, Ann. Inst. Fourier (Grenoble) 24 (1974), no. 1, 149–172 (French). MR 361620
- [CTW] Leonardo Colzani, Mitchell H. Taibleson, and Guido Weiss, Maximal estimates for Cesàro and Riesz means on spheres, Indiana Univ. Math. J. 33 (1984), no. 6, 873–889. MR 763947, https://doi.org/10.1512/iumj.1984.33.33047
- [F] Robert A. Fefferman, A theory of entropy in Fourier analysis, Adv. in Math. 30 (1978), no. 3, 171–201. MR 520232, https://doi.org/10.1016/0001-8708(78)90036-1
- [H] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
- [LTW] Shan Zhen Lu, Mitchell H. Taibleson, and Guido Weiss, On the almost everywhere convergence of Bochner-Riesz means of multiple Fourier series, Harmonic analysis (Minneapolis, Minn., 1981) Lecture Notes in Math., vol. 908, Springer, Berlin-New York, 1982, pp. 311–318. MR 654197
- [MS] Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, https://doi.org/10.1016/0001-8708(79)90012-4
- [MTW] Yves Meyer, Mitchell H. Taibleson, and Guido Weiss, Some functional analytic properties of the spaces 𝐵_{𝑞} generated by blocks, Indiana Univ. Math. J. 34 (1985), no. 3, 493–515. MR 794574, https://doi.org/10.1512/iumj.1985.34.34028
- [So] Fernando Soria, Characterizations of classes of functions generated by blocks and associated Hardy spaces, Indiana Univ. Math. J. 34 (1985), no. 3, 463–492. MR 794573, https://doi.org/10.1512/iumj.1985.34.34027
- [STW] Elias M. Stein, Mitchell H. Taibleson, and Guido Weiss, Weak type estimates for maximal operators on certain 𝐻^{𝑝} classes, Proceedings of the Seminar on Harmonic Analysis (Pisa, 1980), 1981, pp. 81–97. MR 639468
- [SW] Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. MR 0304972
- [T] Mitchell H. Taibleson, Estimates for finite expansions of Gegenbauer and Jacobi polynomials, Recent progress in Fourier analysis (El Escorial, 1983) North-Holland Math. Stud., vol. 111, North-Holland, Amsterdam, 1985, pp. 245–253. MR 848151, https://doi.org/10.1016/S0304-0208(08)70289-5
- [TW1] Mitchell H. Taibleson and Guido Weiss, Certain function spaces connected with almost everywhere convergence of Fourier series, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 95–113. MR 730061
- [TW2] Mitchell H. Taibleson and Guido Weiss, Spaces generated by blocks, Probability theory and harmonic analysis (Cleveland, Ohio, 1983) Monogr. Textbooks Pure Appl. Math., vol. 98, Dekker, New York, 1986, pp. 209–226. MR 830240
Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A85, 40J05, 43A77, 46E30
Retrieve articles in all journals with MSC: 43A85, 40J05, 43A77, 46E30
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1988-0957065-7
Article copyright:
© Copyright 1988
American Mathematical Society