Algebras on the disk and doubly commuting multiplication operators
HTML articles powered by AMS MathViewer
- by Sheldon Axler and Pamela Gorkin PDF
- Trans. Amer. Math. Soc. 309 (1988), 711-723 Request permission
Abstract:
We prove that a bounded analytic function $f$ on the unit disk is in the little Bloch space if and only if the uniformly closed algebra on the disk generated by ${H^\infty }$ and $\overline f$ does not contain the complex conjugate of any interpolating Blaschke product. A version of this result is then used to prove that if $f$ and $g$ are bounded analytic functions on the unit disk such that the commutator ${T_f}T_g^{\ast } - T_g^{\ast }{T_f}$ (here ${T_f}$ denotes the operator of multiplication by $f$ on the Bergman space of the disk) is compact, then $(1 - |z{|^2})\min \{ |f’ (z)|,\;|g’ (z)|\} \to 0$ as $|z| \uparrow 1$.References
- Sheldon Axler, The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53 (1986), no. 2, 315–332. MR 850538, DOI 10.1215/S0012-7094-86-05320-2
- Sheldon Axler, Sun-Yung A. Chang, and Donald Sarason, Products of Toeplitz operators, Integral Equations Operator Theory 1 (1978), no. 3, 285–309. MR 511973, DOI 10.1007/BF01682841
- Sheldon Axler and Allen Shields, Algebras generated by analytic and harmonic functions, Indiana Univ. Math. J. 36 (1987), no. 3, 631–638. MR 905614, DOI 10.1512/iumj.1987.36.36034
- Arlen Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. MR 160136, DOI 10.1007/978-1-4613-8208-9_{1}9 Paul Edward Budde, Support sets and Gleason parts of $M({H^\infty })$, Ph.D. thesis, Univ. of California, Berkeley, 1982.
- Lennart Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930. MR 117349, DOI 10.2307/2372840
- Lennart Carleson, Interpolations by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547–559. MR 141789, DOI 10.2307/1970375
- Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no. 2, 82–89. MR 428044, DOI 10.1007/BF02392413
- John B. Conway, Subnormal operators, Research Notes in Mathematics, vol. 51, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1981. MR 634507
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
- Håkan Hedenmalm, Thin interpolating sequences and three algebras of bounded functions, Proc. Amer. Math. Soc. 99 (1987), no. 3, 489–495. MR 875386, DOI 10.1090/S0002-9939-1987-0875386-8
- Kenneth Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. (2) 86 (1967), 74–111. MR 215102, DOI 10.2307/1970361 Keiji Izuchi, Bloch functions and Hankel operators on Bergman spaces in several variables, preprint.
- Sun Yung A. Chang, A characterization of Douglas subalgebras, Acta Math. 137 (1976), no. 2, 82–89. MR 428044, DOI 10.1007/BF02392413
- G. McDonald and C. Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), no. 4, 595–611. MR 542947, DOI 10.1512/iumj.1979.28.28042
- Walter Rudin, Spaces of type $H^{\infty }+C$, Ann. Inst. Fourier (Grenoble) 25 (1975), no. 1, vi, 99–125 (English, with French summary). MR 377520 Donald Sarason, Blaschke products in ${B_0}$, Linear and Complex Analysis Problem Book, Lecture Notes in Math., vol. 1043, Springer-Verlag, Berlin, 1984. Karel Mattheus Rudolf Stroethoff, Characterizations of the Bloch space and related spaces, Ph.D. thesis, Michigan State Univ., 1987.
- Carl Sundberg and Thomas H. Wolff, Interpolating sequences for $QA_{B}$, Trans. Amer. Math. Soc. 276 (1983), no. 2, 551–581. MR 688962, DOI 10.1090/S0002-9947-1983-0688962-3
- A. L. Vol′berg, Two remarks concerning the theorem of S. Axler, S.-Y. A. Chang and D. Sarason, J. Operator Theory 7 (1982), no. 2, 209–218. MR 658609 Dechao Zheng, Hankel operators and Toeplitz operators on the Bergman space, preprint.
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 711-723
- MSC: Primary 46J15; Secondary 47B35
- DOI: https://doi.org/10.1090/S0002-9947-1988-0961609-9
- MathSciNet review: 961609