Hausdorff dimension in graph directed constructions
HTML articles powered by AMS MathViewer
- by R. Daniel Mauldin and S. C. Williams
- Trans. Amer. Math. Soc. 309 (1988), 811-829
- DOI: https://doi.org/10.1090/S0002-9947-1988-0961615-4
- PDF | Request permission
Abstract:
We introduce the notion of geometric constructions in ${{\mathbf {R}}^m}$ governed by a directed graph $G$ and by similarity ratios which are labelled with the edges of this graph. For each such construction, we calculate a number $\alpha$ which is the Hausdorff dimension of the object constructed from a realization of the construction. The measure of the object with respect to ${\mathcal {H}^\alpha }$ is always positive and $\sigma$-finite. Whether the ${\mathcal {H}^\alpha }$-measure of the object is finite depends on the order structure of the strongly connected components of $G$. Some applications are given.References
- P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philos. Soc. 42 (1946), 15–23. MR 14397, DOI 10.1017/s0305004100022684
- John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600, DOI 10.1512/iumj.1981.30.30055
- Richard S. Ellis, Entropy, large deviations, and statistical mechanics, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 271, Springer-Verlag, New York, 1985. MR 793553, DOI 10.1007/978-1-4613-8533-2
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
- K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, 1986. MR 867284
- Vladimir Drobot and John Turner, Hausdorff dimension and Perron-Frobenius theory, Illinois J. Math. 33 (1989), no. 1, 1–9. MR 974007
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- Jacques Marion, Mesures de Hausdorff et théorie de Perron-Frobenius des matrices non-negatives, Ann. Inst. Fourier (Grenoble) 35 (1985), no. 4, 99–125 (French, with English summary). MR 812320
- Helmut Cajar, Billingsley dimension in probability spaces, Lecture Notes in Mathematics, vol. 892, Springer-Verlag, Berlin-New York, 1981. MR 654147
- Tim Bedford, Dimension and dynamics for fractal recurrent sets, J. London Math. Soc. (2) 33 (1986), no. 1, 89–100. MR 829390, DOI 10.1112/jlms/s2-33.1.89
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 309 (1988), 811-829
- MSC: Primary 28A75
- DOI: https://doi.org/10.1090/S0002-9947-1988-0961615-4
- MathSciNet review: 961615