A criterion for the boundedness of singular integrals on hypersurfaces
HTML articles powered by AMS MathViewer
- by Stephen W. Semmes
- Trans. Amer. Math. Soc. 311 (1989), 501-513
- DOI: https://doi.org/10.1090/S0002-9947-1989-0948198-0
- PDF | Request permission
Abstract:
This paper gives geometric conditions on a hypersurface in ${{\mathbf {R}}^n}$ so that certain singular integrals on that hypersurface define bounded operators on ${L^2}$. These singular integrals include the Cauchy integral operator in the sense of Clifford analysis and in particular the double layer potential. For curves in the plane, this condition is more general than the chord-arc condition but less general than the Ahlfors-David condition. The main tool is the $T(b)$ theorem [DJS].References
- F. Brackx, R. Delanghe, and F. Sommer, Clifford analysis, Pitman, 1982.
- R. R. Coifman, G. David, and Y. Meyer, La solution des conjecture de Calderón, Adv. in Math. 48 (1983), no. 2, 144–148 (French). MR 700980, DOI 10.1016/0001-8708(83)90084-1
- Guy David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 157–189 (French). MR 744071 —, Opérateurs d’intégrale singulière sur les surfaces régulières, Ann. Sci. École Norm. Sup. (to appear).
- G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), no. 4, 1–56 (French). MR 850408, DOI 10.4171/RMI/17 —, Calerón-Zygmund operators, para-accretive functions, and interpolation, preprint.
- Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71–79. MR 676987, DOI 10.1016/0001-8708(82)90054-8
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Akihito Uchiyama, A constructive proof of the Fefferman-Stein decomposition of BMO $(\textbf {R}^{n})$, Acta Math. 148 (1982), 215–241. MR 666111, DOI 10.1007/BF02392729 J. Väisälä, Quasimöbius invariance of uniform holes, preprint.
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 311 (1989), 501-513
- MSC: Primary 42B20; Secondary 42B25
- DOI: https://doi.org/10.1090/S0002-9947-1989-0948198-0
- MathSciNet review: 948198