## The connection matrix theory for Morse decompositions

HTML articles powered by AMS MathViewer

- by Robert D. Franzosa PDF
- Trans. Amer. Math. Soc.
**311**(1989), 561-592 Request permission

## Abstract:

The connection matrix theory for Morse decompositions is introduced. The connection matrices are matrices of maps between the homology indices of the sets in the Morse decomposition. The connection matrices cover, in a natural way, the homology index braid of the Morse decomposition and provide information about the structure of the Morse decomposition. The existence of connection matrices of Morse decompositions is established, and examples illustrating applications of the connection matrix are provided.## References

- Charles Conley,
*Isolated invariant sets and the Morse index*, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR**511133** - Charles Conley and Eduard Zehnder,
*Morse-type index theory for flows and periodic solutions for Hamiltonian equations*, Comm. Pure Appl. Math.**37**(1984), no. 2, 207–253. MR**733717**, DOI 10.1002/cpa.3160370204
R. Franzosa, - Robert Franzosa,
*Index filtrations and the homology index braid for partially ordered Morse decompositions*, Trans. Amer. Math. Soc.**298**(1986), no. 1, 193–213. MR**857439**, DOI 10.1090/S0002-9947-1986-0857439-7 - Robert D. Franzosa,
*The continuation theory for Morse decompositions and connection matrices*, Trans. Amer. Math. Soc.**310**(1988), no. 2, 781–803. MR**973177**, DOI 10.1090/S0002-9947-1988-0973177-6 - Robert D. Franzosa and Konstantin Mischaikow,
*The connection matrix theory for semiflows on (not necessarily locally compact) metric spaces*, J. Differential Equations**71**(1988), no. 2, 270–287. MR**927003**, DOI 10.1016/0022-0396(88)90028-9 - Henry L. Kurland,
*The Morse index of an isolated invariant set is a connected simple system*, J. Differential Equations**42**(1981), no. 2, 234–259. MR**641650**, DOI 10.1016/0022-0396(81)90028-0
—, - Dietmar Salamon,
*Connected simple systems and the Conley index of isolated invariant sets*, Trans. Amer. Math. Soc.**291**(1985), no. 1, 1–41. MR**797044**, DOI 10.1090/S0002-9947-1985-0797044-3 - Joel Smoller,
*Shock waves and reaction-diffusion equations*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York-Berlin, 1983. MR**688146** - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112**

*Index filtrations and connection matrices for partially ordered Morse decompositions*, Ph. D. dissertation, Univ. of Wisconsin-Madison, 1984.

*Homotopy invariants of repeller-attractor pairs*. I,

*The Püppe sequence of an*$r$-$a$

*pair*, J. Differential Equations

**46**(1982). —,

*Homotopy invariants of repeller-attractor pairs*. II,

*Continuation of*$r$-$a$

*pairs*, J. Differential Equations

**49**(1983). C. McCord,

*Mappings and homological properties in the Conley index theory*, Ph. D. dissertation, Univ. of Wisconsin-Madison, 1986. K. Mischaikow,

*Classification of traveling wave solutions of reaction-diffusion systems*, Brown Univ., LCDS #86-5, 1985. J. Reineck,

*The connection matrix and the classification of flows arising from ecological models*, Ph. D. dissertation, Univ. of Wisconsin-Madison, 1985. —,

*Connecting orbits in one parameter families of flows*, preprint.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**311**(1989), 561-592 - MSC: Primary 58F25; Secondary 58E05, 58F09
- DOI: https://doi.org/10.1090/S0002-9947-1989-0978368-7
- MathSciNet review: 978368