Equivariant Morse theory for starshaped Hamiltonian systems
Author:
Claude Viterbo
Journal:
Trans. Amer. Math. Soc. 311 (1989), 621-655
MSC:
Primary 58F05; Secondary 58E05, 58F35
DOI:
https://doi.org/10.1090/S0002-9947-1989-0978370-5
MathSciNet review:
978370
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let $\Sigma$ be a starshaped hypersurface in ${R^{2n}}$; the problem of finding closed characteristics of $\Sigma$ can be classically reduced to a variational problem. This leads to studying an ${S^1}$-equivariant functional on a Hilbert space. The equivariant Morse theory of this functional, together with the assumption that $\Sigma$ only has finitely many geometrically distinct characteristics, leads to a remarkable formula relating the average indices of the characteristics. Using this formula one can prove, at least for $n$ even, that genetically there are infinitely many characteristics (cf. [E1] for the convex case).
- Herbert Amann and Eduard Zehnder, Periodic solutions of asymptotically linear Hamiltonian systems, Manuscripta Math. 32 (1980), no. 1-2, 149–189. MR 592715, DOI https://doi.org/10.1007/BF01298187
- Henri Berestycki, Jean-Michel Lasry, Giovanni Mancini, and Bernhard Ruf, Existence of multiple periodic orbits on star-shaped Hamiltonian surfaces, Comm. Pure Appl. Math. 38 (1985), no. 3, 253–289. MR 784474, DOI https://doi.org/10.1002/cpa.3160380302 A. Borel, Cohomologie des espaces localement compacts d’après Leray, Lecture Notes in Math., no. 2, Springer-Verlag, New York, 1984.
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Raoul Bott, Lectures on Morse theory, old and new, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 331–358. MR 663786, DOI https://doi.org/10.1090/S0273-0979-1982-15038-8
- Raoul Bott, On the iteration of closed geodesics and the Sturm intersection theory, Comm. Pure Appl. Math. 9 (1956), 171–206. MR 90730, DOI https://doi.org/10.1002/cpa.3160090204 V. Brousseau, Thèse de 3ème cycle, Université de Paris IX, 1985.
- Frank H. Clarke, Periodic solutions to Hamiltonian inclusions, J. Differential Equations 40 (1981), no. 1, 1–6. MR 614215, DOI https://doi.org/10.1016/0022-0396%2881%2990007-3
- Frank H. Clarke and Ivar Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), no. 2, 103–116. MR 562546, DOI https://doi.org/10.1002/cpa.3160330202
- Alberto Cambini, Sul lemma di M. Morse, Boll. Un. Mat. Ital. (4) 7 (1973), 87–93 (Italian, with English summary). MR 0315738
- Charles Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, vol. 38, American Mathematical Society, Providence, R.I., 1978. MR 511133
- Charles Conley and Eduard Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984), no. 2, 207–253. MR 733717, DOI https://doi.org/10.1002/cpa.3160370204
- Ivar Ekeland, Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), no. 1, 19–78 (French, with English summary). MR 738494 ---, Index theory for periodic solutions of convex Hamiltonian systems, Cahiers de M. D. no. 85003, Université de Paris IX, 1985.
- Ivar Ekeland and Jean-Michel Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. of Math. (2) 112 (1980), no. 2, 283–319. MR 592293, DOI https://doi.org/10.2307/1971148
- E. R. Fadell, S. Y. Husseini, and P. H. Rabinowitz, Borsuk-Ulam theorems for arbitrary $S^{1}$ actions and applications, Trans. Amer. Math. Soc. 274 (1982), no. 1, 345–360. MR 670937, DOI https://doi.org/10.1090/S0002-9947-1982-0670937-0
- Paul H. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), no. 2, 157–184. MR 467823, DOI https://doi.org/10.1002/cpa.3160310203 E. Spanier, Algebraic topology, 2nd ed., Springer-Verlag, New York, 1975.
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
- Floris Takens, Hamiltonian systems: Generic propeties of closed orbits and local perturbations, Math. Ann. 188 (1970), 304–312. MR 284670, DOI https://doi.org/10.1007/BF01431464 C. Viterbo, Thèse de 3ème cycle, Université de Paris IX, 1985.
- Claude Viterbo, Une théorie de Morse pour les systèmes hamiltoniens étoilés, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), no. 10, 487–489 (French, with English summary). MR 812564
- Claude Viterbo, Intersection de sous-variétés lagrangiennes, fonctionnelles d’action et indice des systèmes hamiltoniens, Bull. Soc. Math. France 115 (1987), no. 3, 361–390 (French, with English summary). MR 926533
- Alan Weinstein, Lectures on symplectic manifolds, CBMS Regional Conference Series in Mathematics, vol. 29, American Mathematical Society, Providence, R.I., 1979. Corrected reprint. MR 598470
- James A. Yorke, Periods of periodic solutions and the Lipschitz constant, Proc. Amer. Math. Soc. 22 (1969), 509–512. MR 245916, DOI https://doi.org/10.1090/S0002-9939-1969-0245916-7 V. A. Yakoubovich and V. M. Starzhinskii, Linear differential equations with periodic coefficients, Wiley, New York.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F05, 58E05, 58F35
Retrieve articles in all journals with MSC: 58F05, 58E05, 58F35
Additional Information
Keywords:
Hamiltonian systems,
closed characteristics,
periodic orbits
Article copyright:
© Copyright 1989
American Mathematical Society