Remarks on classical invariant theory
HTML articles powered by AMS MathViewer
- by Roger Howe
- Trans. Amer. Math. Soc. 313 (1989), 539-570
- DOI: https://doi.org/10.1090/S0002-9947-1989-0986027-X
- PDF | Request permission
Erratum: Trans. Amer. Math. Soc. 318 (1990), 823.
Abstract:
A uniform formulation, applying to all classical groups simultaneously, of the First Fundamental Theory of Classical Invariant Theory is given in terms of the Weyl algebra. The formulation also allows skew-symmetric as well as symmetric variables. Examples illustrate the scope of this formulation.References
- M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279–330. MR 650828, DOI 10.1007/BF01425417
- Shiing-shen Chern, On a generalization of Kähler geometry, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 103–121. MR 0087172
- Stephen Gelbart, Holomorphic discrete series for the real symplectic group, Invent. Math. 19 (1973), 49–58. MR 320231, DOI 10.1007/BF01418850
- Kenneth I. Gross and Ray A. Kunze, Bessel functions and representation theory. II. Holomorphic discrete series and metaplectic representations, J. Functional Analysis 25 (1977), no. 1, 1–49. MR 0453928, DOI 10.1016/0022-1236(77)90030-1
- Sigurđur Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1–154 (1970). MR 263988, DOI 10.1016/0001-8708(70)90037-X
- Roger Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 179–207. MR 789290
- Nathan Jacobson, Basic algebra. II, W. H. Freeman and Co., San Francisco, Calif., 1980. MR 571884
- V. G. Kac, Simple irreducible graded Lie algebras of finite growth, Izv. Akad. Nauk SSSR Ser. Mat. 32 (1968), 1323–1367 (Russian). MR 0259961
- M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1–47. MR 463359, DOI 10.1007/BF01389900
- Bertram Kostant, Graded manifolds, graded Lie theory, and prequantization, Differential geometrical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975) Lecture Notes in Math., Vol. 570, Springer, Berlin, 1977, pp. 177–306. MR 0580292
- Bertram Kostant, Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. of Math. (2) 74 (1961), 329–387. MR 142696, DOI 10.2307/1970237
- Bertram Kostant, A theorem of Frobenius, a theorem of Amitsur-Levitski and cohomology theory, J. Math. Mech. 7 (1958), 237–264. MR 0092755, DOI 10.1512/iumj.1958.7.57019
- Dudley E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, Oxford University Press, New York, 1940. MR 0002127
- Masahiko Saito, Représentations unitaires des groupes symplectiques, J. Math. Soc. Japan 24 (1972), 232–251 (French). MR 299728, DOI 10.2969/jmsj/02420232
- Jean-Pierre Serre, Algèbres de Lie semi-simples complexes, W. A. Benjamin, Inc., New York-Amsterdam, 1966 (French). MR 0215886 C. Seshadri, Letter to M. F. Atiyah.
- David Shale, Linear symmetries of free boson fields, Trans. Amer. Math. Soc. 103 (1962), 149–167. MR 137504, DOI 10.1090/S0002-9947-1962-0137504-6
- R. M. Thrall, On symmetrized Kronecker powers and the structure of the free Lie ring, Amer. J. Math. 64 (1942), 371–388. MR 6149, DOI 10.2307/2371691
- Hans Tilgner, Graded generalizations of Weyl- and Clifford algebras, J. Pure Appl. Algebra 10 (1977/78), no. 2, 163–168. MR 457515, DOI 10.1016/0022-4049(77)90019-6
- André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). MR 0111056 —, Sur certains groupes d’opérateurs unitaires, Acta Math. 11 (1964), 143-211.
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
- D. P. Zhelobenko, Kompaktnye gruppy Li i ikh predstavleniya, Izdat. “Nauka”, Moscow, 1970 (Russian). MR 0473097
Bibliographic Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 313 (1989), 539-570
- MSC: Primary 22E45; Secondary 11E57, 15A72, 20G05, 22E47
- DOI: https://doi.org/10.1090/S0002-9947-1989-0986027-X
- MathSciNet review: 986027