Isospectral potentials on a discrete lattice. III
HTML articles powered by AMS MathViewer
- by Thomas Kappeler PDF
- Trans. Amer. Math. Soc. 314 (1989), 815-824 Request permission
Abstract:
Continuing prior work of the author, spectral problems for a discretized version of the Schrödinger equation ’Laplacian plus potential’ on the torus are considered. Spectral invariants are constructed and with their help isospectral sets of certain nongeneric potentials are determined.References
- Björn Birnir, Complex Hill’s equation and the complex periodic Korteweg-de Vries equations, Comm. Pure Appl. Math. 39 (1986), no. 1, 1–49. MR 820337, DOI 10.1002/cpa.3160390102
- Björn Birnir, Singularities of the complex Korteweg-de Vries flows, Comm. Pure Appl. Math. 39 (1986), no. 3, 283–305. MR 829842, DOI 10.1002/cpa.3160390302
- Gregory Eskin, James Ralston, and Eugene Trubowitz, On isospectral periodic potentials in $\textbf {R}^{n}$, Comm. Pure Appl. Math. 37 (1984), no. 5, 647–676. MR 752594, DOI 10.1002/cpa.3160370505
- V. Guillemin and A. Uribe, Spectral properties of a certain class of complex potentials, Trans. Amer. Math. Soc. 279 (1983), no. 2, 759–771. MR 709582, DOI 10.1090/S0002-9947-1983-0709582-8
- Thomas Kappeler, On isospectral periodic potentials on a discrete lattice. I, Duke Math. J. 57 (1988), no. 1, 135–150. MR 952228, DOI 10.1215/S0012-7094-88-05705-5
- Thomas Kappeler, On isospectral periodic potentials on a discrete lattice. I, Duke Math. J. 57 (1988), no. 1, 135–150. MR 952228, DOI 10.1215/S0012-7094-88-05705-5
- B. M. Levitan and M. G. Gasymov, Determination of a differential equation by two spectra, Uspehi Mat. Nauk 19 (1964), no. 2 (116), 3–63 (Russian). MR 0162996 S. A. Molchanov and M. V. Novitskii, Spectral invariants of the Schrödinger operator on the Euclidean torus, Soviet Math. Dokl. 33 (1986), 82-85.
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 314 (1989), 815-824
- MSC: Primary 39A12; Secondary 35P05, 35Q20, 47B39, 58G25, 81C05
- DOI: https://doi.org/10.1090/S0002-9947-1989-0961624-6
- MathSciNet review: 961624