Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the existence and nonexistence of global solutions of reaction-diffusion equations in sectorial domains
HTML articles powered by AMS MathViewer

by Catherine Bandle and Howard A. Levine PDF
Trans. Amer. Math. Soc. 316 (1989), 595-622 Request permission

Abstract:

In this paper we study the first initial-boundary value problem for ${u_t} = \Delta u + {u^p}$ in conical domains $D = (0,\infty ) \times \Omega \subset {R^N}$ where $\Omega \subset {S^{N - 1}}$ is an open connected manifold with boundary. We obtain some extensions of some old results of Fujita, who considered the case $D = {R^N}$. Let $\lambda = - {\gamma _ - }$ where ${\gamma _ - }$ is the negative root of $\gamma (\gamma + N - 2) = {\omega _1}$ and where ${\omega _1}$ is the smallest Dirichlet eigenvalue of the Laplace-Beltrami operator on $\Omega$. We prove: If $1 < p < 1 + 2/(2 + \lambda )$, there are no nontrivial global solutions. If $1 < p < 1 + 2/\lambda$, there are no stationary solutions in $D - \{ 0\}$ except $u \equiv 0$. If $1 + 2/\lambda < p < (N + 1)/(N - 3)$ (if $N > 3$, arbitrary otherwise) there are singular stationary solutions ${u_s}$. If $u(x,0) \leqslant {u_s}(x)$, the solutions are global. If $1 + 2/\lambda < p < (N + 2)/(N - 2)$ and $u(x,0) \leqslant {u_s}$, with $u(x,0) \in C(\overline D )$, the solutions decay to zero. If $1 + 2/N < p$, there are global solutions. For $1 < p < \infty$, there are ${L^\infty }$ data of arbitrarily small norm, decaying exponentially fast at $r = \infty$, for which the solution is not global. We show that if $D$ is the exterior of a bounded region, there are no global, nontrivial, positive solutions if $1 < p < 1 + 2/N$ and that there are such if $p > 1 + 2/N$. We obtain some related results for ${u_t} = \Delta u + |x{|^\sigma }{u^p}$ in the cone.
References
  • Luis A. Caffarelli and Avner Friedman, Partial regularity of the zero-set of solutions of linear and superlinear elliptic equations, J. Differential Equations 60 (1985), no. 3, 420–433. MR 811775, DOI 10.1016/0022-0396(85)90133-0
  • Hiroshi Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha }$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124 (1966). MR 214914
  • Hiroshi Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 1, Chicago, Ill., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 105–113. MR 0269995
  • Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
  • P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
  • Stanley Kaplan, On the growth of solutions of quasi-linear parabolic equations, Comm. Pure Appl. Math. 16 (1963), 305–330. MR 160044, DOI 10.1002/cpa.3160160307
  • V. A. Kondrat’ev and O. A. Olenik, Boundary value problems for partial differential equations in non-smooth domains, translated in Russian Math. Surveys 38 (2) (1983), 1-86.
  • Howard A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form $Pu_{t}=-Au+{\scr F}(u)$, Arch. Rational Mech. Anal. 51 (1973), 371–386. MR 348216, DOI 10.1007/BF00263041
  • Peter Meier, Existence et non-existence de solutions globales d’une équation de la chaleur semi-linéaire: extension d’un théorème de Fujita, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 13, 635–637 (French, with English summary). MR 867554
  • —, Blow up of solutions of semilinear parabolic differential equations, Z. Angew. Math. Phys. 39 (1988) 135-149. K. J. Falconer, The geometry of fractals sets, Cambridge University Press, New York, 1985.
  • David H. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in Mathematics, Vol. 309, Springer-Verlag, Berlin-New York, 1973. MR 0463624
  • D. H. Sattinger, Monotone methods in nonlinear elliptic and parabolic boundary value problems, Indiana Univ. Math. J. 21 (1971/72), 979–1000. MR 299921, DOI 10.1512/iumj.1972.21.21079
  • B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math. 34 (1981), no. 4, 525–598. MR 615628, DOI 10.1002/cpa.3160340406
  • Wei Ming Ni, A nonlinear Dirichlet problem on the unit ball and its applications, Indiana Univ. Math. J. 31 (1982), no. 6, 801–807. MR 674869, DOI 10.1512/iumj.1982.31.31056
  • H. A. Levine and P. Meier, The value of the critical exponent for reaction-diffusion equations in arbitrary cones (to appear).
  • Otared Kavian, Remarks on the large time behaviour of a nonlinear diffusion equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), no. 5, 423–452 (English, with French summary). MR 921547
  • M. Escobedo and O. Kavian, Asymptotic behaviour of positive solutions of a nonlinear heat equation, Houston J. Math. 14 (1988), no. 1, 39–50. MR 959221
  • M. Escobedo and O. Kavian, Variational problems related to self-similar solutions of the heat equation, Nonlinear Anal. 11 (1987), no. 10, 1103–1133. MR 913672, DOI 10.1016/0362-546X(87)90001-0
  • L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), no. 3-4, 273–303. MR 402291, DOI 10.1007/BF02761595
  • R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, Centre for Math. Anal., Report CMA-R25-87, Australian Nat. Univ., Canberra, Australia, 1987. Wi-Ming Ni and J. Serrin, Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case, Acad. Naz. Lincei 77 (1986), 231-257.
  • Luc Robbiano, Sur les zéros de solutions d’inégalités différentielles elliptiques, Comm. Partial Differential Equations 12 (1987), no. 8, 903–919 (French). MR 891744, DOI 10.1080/03605308708820513
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 35K57
  • Retrieve articles in all journals with MSC: 35K57
Additional Information
  • © Copyright 1989 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 316 (1989), 595-622
  • MSC: Primary 35K57
  • DOI: https://doi.org/10.1090/S0002-9947-1989-0937878-9
  • MathSciNet review: 937878