## Prime ideals in differential operator rings. Catenarity

HTML articles powered by AMS MathViewer

- by K. A. Brown, K. R. Goodearl and T. H. Lenagan PDF
- Trans. Amer. Math. Soc.
**317**(1990), 749-772 Request permission

## Abstract:

Let $R$ be a commutative algebra over the commutative ring $k$, and let $\Delta = \{ {\delta _1}, \ldots ,{\delta _n}\}$ be a finite set of commuting $k$-linear derivations from $R$ to $R$. Let $T = R[{\theta _1}, \ldots ,{\theta _n};{\delta _1}, \ldots ,{\delta _n}]$ be the corresponding ring of differential operators. We define and study an isomorphism of left $R$-modules between $T$ and its associated graded ring $R[{x_1}, \ldots ,{x_n}]$, a polynomial ring over $R$. This isomorphism is used to study the prime ideals of $T$, with emphasis on the question of catenarity. We prove that $T$ is catenary when $R$ is a commutative noetherian universally catenary $k$-algebra and one of the following cases occurs: (A) $k$ is a field of characteristic zero and $\Delta$ acts locally finitely; (B) $k$ is a field of positive characteristic; (C) $k$ is the ring of integers, $R$ is affine over $k$, and $\Delta$ acts locally finitely.## References

- Allen D. Bell,
*Localization and ideal theory in iterated differential operator rings*, J. Algebra**106**(1987), no. 2, 376–402. MR**880964**, DOI 10.1016/0021-8693(87)90003-2 - Allen D. Bell and Gunnar Sigurđsson,
*Catenarity and Gel′fand-Kirillov dimension in Ore extensions*, J. Algebra**127**(1989), no. 2, 409–425. MR**1028462**, DOI 10.1016/0021-8693(89)90261-5 - Walter Borho, Peter Gabriel, and Rudolf Rentschler,
*Primideale in Einhüllenden auflösbarer Lie-Algebren (Beschreibung durch Bahnenräume)*, Lecture Notes in Mathematics, Vol. 357, Springer-Verlag, Berlin-New York, 1973 (German). MR**0376790** - Paul Moritz Cohn,
*Algebra. Vol. 2*, John Wiley & Sons, London-New York-Sydney, 1977. With errata to Vol. I. MR**0530404** - John R. Fisher,
*A Goldie theorem for differentiably prime rings*, Pacific J. Math.**58**(1975), no. 1, 71–77. MR**374195**
O. Gabber, - Kenneth R. Goodearl and Robert B. Warfield Jr.,
*Primitivity in differential operator rings*, Math. Z.**180**(1982), no. 4, 503–523. MR**667005**, DOI 10.1007/BF01214722 - Ronald S. Irving,
*Generic flatness and the Nullstellensatz for Ore extensions*, Comm. Algebra**7**(1979), no. 3, 259–277. MR**519702**, DOI 10.1080/00927877908822347 - D. A. Jordan,
*Noetherian Ore extensions and Jacobson rings*, J. London Math. Soc. (2)**10**(1975), 281–291. MR**389988**, DOI 10.1112/jlms/s2-10.3.281 - Irving Kaplansky,
*Commutative rings*, Allyn and Bacon, Inc., Boston, Mass., 1970. MR**0254021** - Günter R. Krause and Thomas H. Lenagan,
*Growth of algebras and Gelfand-Kirillov dimension*, Revised edition, Graduate Studies in Mathematics, vol. 22, American Mathematical Society, Providence, RI, 2000. MR**1721834**, DOI 10.1090/gsm/022 - Martin Lorenz,
*Chains of prime ideals in enveloping algebras of solvable Lie algebras*, J. London Math. Soc. (2)**24**(1981), no. 2, 205–210. MR**631934**, DOI 10.1112/jlms/s2-24.2.205 - Hideyuki Matsumura,
*Commutative algebra*, 2nd ed., Mathematics Lecture Note Series, vol. 56, Benjamin/Cummings Publishing Co., Inc., Reading, Mass., 1980. MR**575344** - Louis Halle Rowen,
*Polynomial identities in ring theory*, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR**576061** - William Schelter,
*Non-commutative affine P.I. rings are catenary*, J. Algebra**51**(1978), no. 1, 12–18. MR**485980**, DOI 10.1016/0021-8693(78)90131-X - Gunnar Sigurdsson,
*Differential operator rings whose prime factors have bounded Goldie dimension*, Arch. Math. (Basel)**42**(1984), no. 4, 348–353. MR**753356**, DOI 10.1007/BF01246126 - P. F. Smith,
*Localization and the AR property*, Proc. London Math. Soc. (3)**22**(1971), 39–68. MR**294383**, DOI 10.1112/plms/s3-22.1.39 - Sleiman Yammine,
*Les théorèmes de Cohen-Seidenberg en algèbre non commutative*, Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978) Lecture Notes in Math., vol. 740, Springer, Berlin, 1979, pp. 120–169 (French). MR**563499**

*Equidimensionalité de la variété charactéristique*, Exposé de O. Gabber, rédigé par T. Levasseur, Université de Paris VI, 1982.

## Additional Information

- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**317**(1990), 749-772 - MSC: Primary 16A05; Secondary 16A66
- DOI: https://doi.org/10.1090/S0002-9947-1990-0946215-3
- MathSciNet review: 946215