The Schubert calculus, braid relations, and generalized cohomology
HTML articles powered by AMS MathViewer
- by Paul Bressler and Sam Evens
- Trans. Amer. Math. Soc. 317 (1990), 799-811
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968883-2
- PDF | Request permission
Abstract:
Let $X$ be the flag variety of a compact Lie group and let ${h^{\ast }}$ be a complex-oriented generalized cohomology theory. We introduce operators on ${h^{\ast }}(X)$ which generalize operators introduced by Bernstein, Gel’fand, and Gel’fand for rational cohomology and by Demazure for $K$-theory. Using the Becker-Gottlieb transfer, we give a formula for these operators, which enables us to prove that they satisfy braid relations only for the two classical cases, thereby giving a topological interpretation of a theorem proved by the authors and extended by Gutkin.References
- J. F. Adams, Stable homotopy and generalised homology, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, Ill.-London, 1974. MR 0402720
- E. Akyıldız and J. B. Carrell, Zeros of holomorphic vector fields and the Gysin homomorphism, Singularities, Part 1 (Arcata, Calif., 1981) Proc. Sympos. Pure Math., vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 47–54. MR 713044, DOI 10.1090/pspum/040.1/713044
- Emil Artin, Galois theory, Notre Dame Mathematical Lectures, no. 2, University of Notre Dame Press, South Bend, Ind., 1959. Edited and supplemented with a section on applications by Arthur N. Milgram; Second edition, with additions and revisions; Fifth reprinting. MR 0265324
- M. F. Atiyah and R. Bott, A Lefschetz fixed point formula for elliptic complexes. II. Applications, Ann. of Math. (2) 88 (1968), 451–491. MR 232406, DOI 10.2307/1970721
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38. MR 0139181
- J. C. Becker and D. H. Gottlieb, The transfer map and fiber bundles, Topology 14 (1975), 1–12. MR 377873, DOI 10.1016/0040-9383(75)90029-4 J. N. Bernstein, I. M. Gel’fand, S. I. Gel’fand, Schubert cells and the cohomology of spaces $G/P$, Russian Math Surveys 28 (1973), 1-26.
- A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces. I, Amer. J. Math. 80 (1958), 458–538. MR 102800, DOI 10.2307/2372795
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1337, Hermann, Paris, 1968 (French). MR 0240238
- Sam Evens and Paul Bressler, On certain Hecke rings, Proc. Nat. Acad. Sci. U.S.A. 84 (1987), no. 3, 624–625. MR 873070, DOI 10.1073/pnas.84.3.624
- G. Brumfiel and I. Madsen, Evaluation of the transfer and the universal surgery classes, Invent. Math. 32 (1976), no. 2, 133–169. MR 413099, DOI 10.1007/BF01389959
- Michel Demazure, Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. (4) 7 (1974), 53–88 (French). MR 354697
- Eldon Dyer, Cohomology theories, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0268883 S. Evens, The transfer for compact Lie groups, induced representations, and braid relations, Thesis MIT, 1988.
- Eugene Gutkin, Representations of Hecke algebras, Trans. Amer. Math. Soc. 309 (1988), no. 1, 269–277. MR 957070, DOI 10.1090/S0002-9947-1988-0957070-0
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
- Victor G. Kac, Constructing groups associated to infinite-dimensional Lie algebras, Infinite-dimensional groups with applications (Berkeley, Calif., 1984) Math. Sci. Res. Inst. Publ., vol. 4, Springer, New York, 1985, pp. 167–216. MR 823320, DOI 10.1007/978-1-4612-1104-4_{7}
- George Lusztig, Equivariant $K$-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), no. 2, 337–342. MR 784189, DOI 10.1090/S0002-9939-1985-0784189-2
- Bertram Kostant and Shrawan Kumar, The nil Hecke ring and cohomology of $G/P$ for a Kac-Moody group $G$, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), no. 6, 1543–1545. MR 831908, DOI 10.1073/pnas.83.6.1543
- Bertram Kostant and Shrawan Kumar, $T$-equivariant $K$-theory of generalized flag varieties, Proc. Nat. Acad. Sci. U.S.A. 84 (1987), no. 13, 4351–4354. MR 894705, DOI 10.1073/pnas.84.13.4351
- George Lusztig, Equivariant $K$-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), no. 2, 337–342. MR 784189, DOI 10.1090/S0002-9939-1985-0784189-2
- Stephen A. Mitchell and Stewart B. Priddy, Stable splittings derived from the Steinberg module, Topology 22 (1983), no. 3, 285–298. MR 710102, DOI 10.1016/0040-9383(83)90014-9
- Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971). MR 290382, DOI 10.1016/0001-8708(71)90041-7
- M. F. Atiyah and F. Hirzebruch, The Riemann-Roch theorem for analytic embeddings, Topology 1 (1962), 151–166. MR 148084, DOI 10.1016/0040-9383(65)90023-6
- Michiel Hazewinkel, Formal groups and applications, Pure and Applied Mathematics, vol. 78, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506881
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 799-811
- MSC: Primary 57T15; Secondary 22E45, 32M10, 55N20
- DOI: https://doi.org/10.1090/S0002-9947-1990-0968883-2
- MathSciNet review: 968883