Construction by isotopy. II
HTML articles powered by AMS MathViewer
 by Daniel S. Silver PDF
 Trans. Amer. Math. Soc. 317 (1990), 813823 Request permission
Abstract:
Construction by isotopy is a technique introduced by Iain R. Aitchison for obtaining doubly slice fibered knots in any dimension. We show that if $k$ is any doubly slice fibered $(n  2)$knot, $n \geqslant 5$, such that ${\pi _1}({S^n}  k) \cong Z$, then $k$ is constructible by isotopy. We also prove that the $m$twistspin of any doubly slice knot is constructible by isotopy. Consequently, there exists a double slice knot constructible by isotopy that is not the double of any disk knot. We also give an example of a doubly slice fibered $6$knot that is not constructible by isotopy.References

I. R. Aitchison, Isotoping and twisting knots and ribbons, Ph.D. Dissertation, University of California at Berkeley, 1984.
 Hyman Bass, The stable structure of quite general linear groups, Bull. Amer. Math. Soc. 70 (1964), 429–433. MR 160825, DOI 10.1090/S000299041964111307
 W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153–160. MR 195104, DOI 10.1007/BF02564368
 Sylvain Cappell and Daniel Ruberman, Imbeddings and homology cobordisms of lens spaces, Comment. Math. Helv. 63 (1988), no. 1, 75–88. MR 928028, DOI 10.1007/BF02566753
 Jean Cerf, La stratification naturelle des espaces de fonctions différentiables réelles et le théorème de la pseudoisotopie, Inst. Hautes Études Sci. Publ. Math. 39 (1970), 5–173 (French). MR 292089
 Marshall M. Cohen, A course in simplehomotopy theory, Graduate Texts in Mathematics, Vol. 10, SpringerVerlag, New YorkBerlin, 1973. MR 0362320
 F. T. Farrell, The obstruction to fibering a manifold over a circle, Indiana Univ. Math. J. 21 (1971/72), 315–346. MR 290397, DOI 10.1512/iumj.1971.21.21024 L. R. Hitt and D. Silver, Families of ribbon knots via Stallings twists, Preprint.
 Hidetaka Terasaka and Fujitsugu Hosokawa, On the unknotted sphere $S^{2}$ in $E^{4}$, Osaka Math. J. 13 (1961), 265–270. MR 142117
 J. Levine, Doubly sliced knots and doubled disk knots, Michigan Math. J. 30 (1983), no. 2, 249–256. MR 718271, DOI 10.1307/mmj/1029002856
 R. A. Litherland, Deforming twistspun knots, Trans. Amer. Math. Soc. 250 (1979), 311–331. MR 530058, DOI 10.1090/S00029947197905300584
 J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358–426. MR 196736, DOI 10.1090/S000299041966114842
 James R. Munkres, Elementary differential topology, Revised edition, Annals of Mathematics Studies, No. 54, Princeton University Press, Princeton, N.J., 1966. Lectures given at Massachusetts Institute of Technology, Fall, 1961. MR 0198479
 Daniel Ruberman, Imbedding punctured lens spaces and connected sums, Pacific J. Math. 113 (1984), no. 2, 481–491. MR 749551
 Daniel Ruberman, The CassonGordon invariants in highdimensional knot theory, Trans. Amer. Math. Soc. 306 (1988), no. 2, 579–595. MR 933307, DOI 10.1090/S00029947198809333079
 L. C. Siebenmann, A total Whitehead torsion obstruction to fibering over the circle, Comment. Math. Helv. 45 (1970), 1–48. MR 287564, DOI 10.1007/BF02567315
 Daniel Silver, On Aitchison’s construction by isotopy, Trans. Amer. Math. Soc. 305 (1988), no. 2, 641–652. MR 924773, DOI 10.1090/S00029947198809247733 L. Smolinsky, Double disk knots and a link invariant, Ph. D. Dissertation, Brandeis Univ., Waltham, Mass., 1985.
 Edwin H. Spanier, Algebraic topology, McGrawHill Book Co., New YorkToronto, Ont.London, 1966. MR 0210112
 John R. Stallings, On infinite processes leading to differentiability in the complement of a point, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 245–254. MR 0180983
 E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471–495. MR 195085, DOI 10.1090/S00029947196501950858
Additional Information
 © Copyright 1990 American Mathematical Society
 Journal: Trans. Amer. Math. Soc. 317 (1990), 813823
 MSC: Primary 57Q45; Secondary 57M25
 DOI: https://doi.org/10.1090/S00029947199009871681
 MathSciNet review: 987168