Equivariant BP-cohomology for finite groups
HTML articles powered by AMS MathViewer
- by N. Yagita
- Trans. Amer. Math. Soc. 317 (1990), 485-499
- DOI: https://doi.org/10.1090/S0002-9947-1990-1002925-3
- PDF | Request permission
Abstract:
The Brown-Peterson cohomology rings of classifying spaces of finite groups are studied, considering relations to the other generalized cohomology theories. In particular, ${\operatorname {BP} ^{\ast }}(M)$ are computed for minimal nonabelian $p$-groups $M$. As an application, we give a necessary condition for the existence of nonabelian $p$-subgroups of compact Lie groups.References
- Leonard Evens, A generalization of the transfer map in the cohomology of groups, Trans. Amer. Math. Soc. 108 (1963), 54–65. MR 153725, DOI 10.1090/S0002-9947-1963-0153725-1
- David Copeland Johnson and W. Stephen Wilson, $BP$ operations and Morava’s extraordinary $K$-theories, Math. Z. 144 (1975), no. 1, 55–75. MR 377856, DOI 10.1007/BF01214408
- Peter S. Landweber, Coherence, flatness and cobordism of classifying spaces, Proc. Advanced Study Inst. on Algebraic Topology (Aarhus, 1970) Aarhus Univ., Matematisk Inst., Aarhus, 1970, pp. 256–269. MR 0271964
- Peter S. Landweber, Homological properties of comodules over $M\textrm {U}_\ast (M\textrm {U})$ and BP$_\ast$(BP), Amer. J. Math. 98 (1976), no. 3, 591–610. MR 423332, DOI 10.2307/2373808
- Daniel Quillen, A cohomological criterion for $p$-nilpotence, J. Pure Appl. Algebra 1 (1971), no. 4, 361–372. MR 318339, DOI 10.1016/0022-4049(71)90003-X
- Daniel Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549–572; ibid. (2) 94 (1971), 573–602. MR 298694, DOI 10.2307/1970770
- Daniel Quillen, Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math. 7 (1971), 29–56 (1971). MR 290382, DOI 10.1016/0001-8708(71)90041-7 D. Ravenel, private communication.
- L. Rédei, Das “schiefe Produkt” in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören, Comment. Math. Helv. 20 (1947), 225–264 (German). MR 21933, DOI 10.1007/BF02568131
- C. T. Stretch, Stable cohomotopy and cobordism of abelian groups, Math. Proc. Cambridge Philos. Soc. 90 (1981), no. 2, 273–278. MR 620737, DOI 10.1017/S0305004100058734
- M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 396–408. MR 1000392, DOI 10.1007/BFb0085243
- Nobuaki Yagita, The exact functor theorem for $\textrm {BP}_\ast /I_{n}$-theory, Proc. Japan Acad. 52 (1976), no. 1, 1–3. MR 394631
- Nobuaki Yagita, On relations between Brown-Peterson cohomology and the ordinary mod $p$ cohomology theory, Kodai Math. J. 7 (1984), no. 2, 273–285. MR 744140, DOI 10.2996/kmj/1138036912
- Nobuaki Yagita, On the dimension of spheres whose product admits a free action by a nonabelian group, Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 141, 117–127. MR 780356, DOI 10.1093/qmath/36.1.117
- A. Borel and J.-P. Serre, Sur certains sous-groupes des groupes de Lie compacts, Comment. Math. Helv. 27 (1953), 128–139 (French). MR 54612, DOI 10.1007/BF02564557
- Eric M. Friedlander and Guido Mislin, Cohomology of classifying spaces of complex Lie groups and related discrete groups, Comment. Math. Helv. 59 (1984), no. 3, 347–361. MR 761803, DOI 10.1007/BF02566356
- Samuel N. Kleinerman, The cohomology of Chevalley groups of exceptional Lie type, Mem. Amer. Math. Soc. 39 (1982), no. 268, viii+82. MR 668808, DOI 10.1090/memo/0268
- Shin-ichiro Ihara and Takeo Yokonuma, On the second cohomology groups (Schur-multipliers) of finite reflection groups, J. Fac. Sci. Univ. Tokyo Sect. I 11 (1965), 155–171 (1965). MR 190232
- C. B. Thomas, Characteristic classes and the cohomology of finite groups, Cambridge Studies in Advanced Mathematics, vol. 9, Cambridge University Press, Cambridge, 1986. MR 878978
- Michael J. Hopkins, Nicholas J. Kuhn, and Douglas C. Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000), no. 3, 553–594. MR 1758754, DOI 10.1090/S0894-0347-00-00332-5
Bibliographic Information
- © Copyright 1990 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 317 (1990), 485-499
- MSC: Primary 55N91; Secondary 55N22
- DOI: https://doi.org/10.1090/S0002-9947-1990-1002925-3
- MathSciNet review: 1002925