Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.48.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On sets that are uniquely determined by a restricted set of integrals
HTML articles powered by AMS MathViewer

by J. H. B. Kemperman PDF
Trans. Amer. Math. Soc. 322 (1990), 417-458 Request permission

Abstract:

In many applied areas, such as tomography and crystallography, one is confronted by an unknown subset $S$ of a measure space $(X,\lambda )$ such as ${{\mathbf {R}}^n}$, or an unknown function $0 \leqslant \phi \leqslant 1$ on $X$, having known moments (integrals) relative to a specified class $F$ of functions $f:X \to {\mathbf {R}}$. Usually, these $F$-moments do not fully determine the object $S$ or function $\phi$. We will say that $S$ is a set of uniqueness if no other function $0 \leqslant \psi \leqslant 1$ has the same $F$-moments as $S$ in so far as the latter moments exist. Here, $S$ is identified with its indicator function. Within this general setting and with no further assumptions, we develop a powerful sufficient condition for uniqueness, called generalized additivity. When $F$ is a finite class, this condition of generalized additivity is shown to be also necessary for uniqueness. For each $\phi$, which is not the indicator function of a set of uniqueness, there exist infinitely many sets having the same $F$-moments as $\phi$, provided $(X,\lambda ,F)$ is nonatomic or regular and, moreover, ‘strongly rich’, a condition which is satisfied in many applications. Using such general results, we also study the uniqueness problem for measures with given marginals relative to a given system of projections ${\pi _j}:X \to {Y_j}(j \in J)$. Here, one likes to know, for instance, what subsets $S$ of $X$ are uniquely determined by the corresponding set of projections (X-ray pictures). It is allowed that $\lambda (S) = \infty$. Our results are also relevant to a wide class of optimization problems.
References
  • N. I. Aheizer and M. Krein, Some questions in the theory of moments, Translations of Mathematical Monographs, Vol. 2, American Mathematical Society, Providence, R.I., 1962. Translated by W. Fleming and D. Prill. MR 0167806
  • W. A. Carrington, Moment problems and ill-posed operator equations with convex constraints, Ph.D. Thesis, Washington Univ., St. Louis, 1982.
  • P. C. Fishburn, J. C. Lagarias, J. A. Reeds, and L. A. Shepp, Sets uniquely determined by projections on axes. I. Continuous case, SIAM J. Appl. Math. 50 (1990), no. 1, 288–306. MR 1036243, DOI 10.1137/0150017
  • —, Sets uniquely determined by projections on axes II. Discrete case, Preprint, 13 pp.
  • Sam Gutmann, J. H. B. Kemperman, J. A. Reeds, and L. A. Shepp, Existence of probability measures with given marginals, Ann. Probab. 19 (1991), no. 4, 1781–1797. MR 1127728
  • Konrad Jacobs, Measure and integral, Probability and Mathematical Statistics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. With an appendix by Jaroslav Kurzweil. MR 514702
  • Samuel Karlin and William J. Studden, Tchebycheff systems: With applications in analysis and statistics, Pure and Applied Mathematics, Vol. XV, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1966. MR 0204922
  • J. H. B. Kemperman, On a class of moment problems, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 101–126. MR 0431335
  • J. H. B. Kemperman, On the role of duality in the theory of moments, Semi-infinite programming and applications (Austin, Tex., 1981) Lecture Notes in Econom. and Math. Systems, vol. 215, Springer, Berlin-New York, 1983, pp. 63–92. MR 709269
  • J. H. B. Kemperman, Geometry of the moment problem, Moments in mathematics (San Antonio, Tex., 1987) Proc. Sympos. Appl. Math., vol. 37, Amer. Math. Soc., Providence, RI, 1987, pp. 16–53. MR 921083, DOI 10.1090/psapm/037/921083
  • J. H. B. Kemperman, Sets of uniqueness and systems of inequalities having a unique solution, Pacific J. Math. 148 (1991), no. 2, 275–301. MR 1094491
  • —, On the lack of uniqueness when reconstructing a set from finitely many central projections (in preparation).
  • J. F. C. Kingman and A. P. Robertson, On a theorem of Lyapunov, J. London Math. Soc. 43 (1968), 347–351. MR 224768, DOI 10.1112/jlms/s1-43.1.347
  • M. G. Kreĭn, The ideas of P. L. Čebyšev and A. A. Markov in the theory of limiting values of integrals and their further development, Amer. Math. Soc. Transl. (2) 12 (1959), 1–121. MR 0113106, DOI 10.1090/trans2/012/01
  • M. G. Kreĭn and A. A. Nudel′man, The Markov moment problem and extremal problems, Translations of Mathematical Monographs, Vol. 50, American Mathematical Society, Providence, R.I., 1977. Ideas and problems of P. L. Čebyšev and A. A. Markov and their further development; Translated from the Russian by D. Louvish. MR 0458081
  • A. Kuba and A. Volčič, Characterisation of measurable plane sets which are reconstructable from their two projections, Inverse Problems 4 (1988), no. 2, 513–527. MR 954907
  • G. G. Lorentz, A problem of plane measure, Amer. J. Math. 71 (1949), 417–426. MR 28925, DOI 10.2307/2372255
  • A. Volcic, On a class of plane sets, which can be reconstructed from two Steiner symmetrizations, Manuscript.
Similar Articles
Additional Information
  • © Copyright 1990 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 322 (1990), 417-458
  • MSC: Primary 44A60; Secondary 28A99, 49R99, 60A10
  • DOI: https://doi.org/10.1090/S0002-9947-1990-1076178-4
  • MathSciNet review: 1076178